欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 588-596.doi: 10.3724/SP.J.1006.2009.00588

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析

李雪林12,林忠旭1,聂以春1,郭小平1,张献龙1*   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2河南科技大学农学院,河南洛阳471003
  • 收稿日期:2008-10-12 修回日期:2009-01-10 出版日期:2009-04-12 网络出版日期:2009-02-13
  • 通讯作者: 张献龙 E-mail:xlzhang@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA00105),国家棉花产业创新体系项目资助。

MSAP Analysis of Epigenetic Changes in Cotton(Gossypium hirsutum L.) under Salt Stress

LI Xue-Lin12,LIN Zhong-Xu1,NIE Yi-Chun1,GUO Xiao-Ping1,ZHANG Xian-Long1*   

  1. Huazhong Agricultural University, Wuhan 430070,China;2College of Agronomy,Henan University of Science and Technology,Luoyang 471003,China
  • Received:2008-10-12 Revised:2009-01-10 Published:2009-04-12 Published online:2009-02-13
  • Contact: ZHANG Xian-Long E-mail:xlzhang@mail.hzau.edu.cn

摘要:

盐胁迫是非生物逆境中对作物危害比较严重的自然灾害之一, 严重影响和制约作物的产量和种植面积。本研究以陆地棉品系YZ1为材料, 调查不同NaCl浓度下棉花幼苗生长及根基因组DNA的甲基化水平和变化模式。结果表明,对棉花幼苗的株高和根长生长100 mmol L-1 NaCl有促进作用, 200 mmol L-1 NaCl有显著抑制作用;100~200 mmol L-1 NaCl胁迫严重抑制棉花幼苗的侧根数量。甲基化敏感扩增多态性(methylation-sensitive amplification polymorphism, MSAP)分析表明, 100150200 mmol L-1 NaCl处理后根基因组DNA甲基化比率分别为38.1%35.234.5%, 均低于对照(41.2%), 同时棉花幼苗根DNA的甲基化水平与NaCl处理浓度呈显著负相关(r = –0.986)。与对照相比, 100150200 mmol L-1 NaCl胁迫下棉花幼苗根基因组DNA的甲基化和去甲基化分别为6.4%7.6%11.3%12.7%11.1%8.2%。此外, 序列和RT-PCR分析表明, MSAP差异片段高度同源的基因的表达在处理与对照间差异显著。

关键词: 棉花, 盐胁迫, DNA甲基化, 甲基化敏感扩增多态性, RT-PCR

Abstract:

Salinity is one of the important limiting factors in plant production worldwide. The objectives of the study were to assess the effect of salt stress on the plant growth and to determine if DNA can be methylated in cotton plants (Gossypium hirsutum) by methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that 100 mmol L-1 NaCl obviously promoted plant height and root length of cotton seedlings, but 200 mmol L-1 NaCl significantly inhibited plant growth; 100–200 mmol L-1 NaCl inhibited the number of lateral root considerably. The analysis of MSAP showed that the level of global DNA methylation decreased from 41.2% to 34.5% as the salt concentrations increased; there was a significantly negative correlation (r = –0.986) between NaCl concentrations and the level of DNA methylation in cotton roots. Under stresses of 100, 150 and 200 mmol L-1 NaCl, methylation and demethylation of DNA were 6.4%, 7.6%, 11.3% and 12.7%, 11.1%, 8.2%, respectively. In addition, the analyses of sequences and RT-PCR showed that expressions of genes homologous to MSAP fragments in roots were different between control and treated plants under salt stress, suggesting that these genes would play an important role in the cotton adaptation of salt stress.

Key words: Cotton, Salt stress, DNA methylation, MSAP, RT-PCR

[1]Saze H, Mittelsten Scheid O, Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet, 2003, 34: 65–69
[2]Chan S W L, Henderson I R, Jacobsen S E. Gardening the genome DNA methylation Arabidopsis thaliana. Nat Rev Genet, 2005, 6: 351–360
[3]Razin A, Cedar H. DNA methylation and gene expression. Microbiol Mol Biol Rev, 1991, 55: 451–458
[4]Li E. Chromatin modification and epigenetic reprogramming in mammalian development, Nat Rev Genet, 2002, 3: 662–673
[5]Jablonka E, Goiten R, Marcus M, Cedar H. DNA hypomethylation causes an increase in DNase I sensitivity and an advance in the timing of replication of the entire X chromosome. Chromosoma, 1985, 93: 152–156
[6]Jullien P E, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18: 1360–1372
[7]Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics, 2004, 168: 2217–2226
[8]Zluvova J, Janousek B, Vyskot B. Immuno-histchemical study of DNA methylation dynamics during plant development. J Exp Bot, 2001, 52: 2263–2273
[9]Jaligot E, Beule T, Rival A. Methylation-sensitive RFLPs: Characterization of two oil palm markers showing somaclonal variation-associated polymorphism. Theor Appl Genet, 2002, 104: 1263–1269
[10]Mcclelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonuclease and DNA modification methyltransferases. Nucl Acids Res, 1994, 17: 3640–3659
[11]Ashikawa I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars. Plant Mol Biol, 2001, 45: 31–39
[12]Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom, 2002, 268: 543–552
[13]Hao Y J, Deng X X. Stress treatments and DNA methylation affected the somatic embryogenesis of Citrus callus. Acta Bot Sin, 2002, 44: 673–677
[14]Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2004, 166: 169–178
[15]Xiong L M, Karen S S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14(suppl): 165–183
[16]Richards E J, Peacock W J, Dennis E S. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev, 2000, 10: 217–223
[17]Xiao W, Custard K D, Brown R C, Lemmon B E, Harada J J, Goldberg R B, Fischer R L. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell, 2006, 18: 805–814
[18]Finnegan E J, Genger R K, Kovac K, Kovac K, Peacock W J, Dennis E S. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA, 1998, 95: 5824–5829
[19]Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol, 1998, 37: 349–362
[20]Edward K, Catherine A, Jim H, Mark A, Marc R. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J, 2000, 23: 267–278
[21]Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987–12992
[22]He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 2005, 44: 903–916
[23]Lin Z X, Zhang X L, Nie Y C, He D H, Wu M Q. Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull, 2003, 48: 2063–2067
[24]Zhu L-F(朱龙付), Tu L-L(涂礼丽), Zeng F-C(曾范昌), Liu D-Q(刘迪秋), Zhang X-L(张献龙). An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agron Sin (作物学报), 2005, 31(12): 1657–1659 (in Chinese with English abstract)
[25]Zhao Y, Yu S, Xing C, Fan S, Song M. Analysis of DNA methylation in cotton hybrids and their parents. Mol Biol, 2008, 42: 169–178
[26]Ye W-W(叶武威), Pang N-C(庞念厂), Wang J-J(王俊娟), Fan B-X(樊宝相). Characteristics of absorbing, accumulating and distribution of Na+ under the salinity stress on cotton. Cotton Sci (棉花学报). 2006, 18(5): 279–283(in Chinese with English abstract)
[27]Richards E J. DNA methylation and plant development. Trends Genet, 1997, 13: 319–323
[28]Yoder J A, Walsh C P, Bester T H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 1997, 13: 335–340
[29]Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta. Pakistan. Aquatic Bot, 2001, 70: 259–268
[30]Lu G Y, Wu X M, Chen B Y, Gao G Z, Xu K. Evaluation of genetic and epigenetic modification in rapeseed (Brassica napus) induced by salt stress. J Integr Plant Biol, 2007, 49: 1599–1607
[31]Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf, 2005, 60: 324–349
[32]Spollen W G, Sharp R E, Saab I N, Wu Y. Regulation of Cell Expansion in Roots and Shoots at Low Water Potentials. In: Smith J A C, Griffiths H, eds. Water Deficits: Plant Responses from Cell to Community. Oxford: BIOS Scientific Publishers, 1993. pp 37–52
[33]Van der Weele C M, Spollen W G, Sharp R E, Baskin T I. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot, 2000, 51: 1555–1562
[34]Deak K I, Malamy J. Osmotic regulation of root system architecture. Plant J, 2005, 43: 17–28
[35]Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom, 2002, 268: 543–552
[36]Ge C-L(葛才林), Yang X-Y(杨小勇), Liu X-N(刘向农), Sun J-H(孙锦荷), Luo S-S(罗时石), Wang Z-G(王泽港). Effect of heavy metal on levels of methylation in DNA of rice and wheat. J Plant Physiol Mol Biol (植物生理与生物学学报), 2002, 28: 363–368 (in Chinese with English abstract)
[37]Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M. Analysis of cytosine methylaion pattern in response to water deficit in pea root tips. Plant Biol, 2002, 4: 694–699
[38]Aina R, Sgorbati S, Santagostino A, Labra A, Ghiani A, Citterio S. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant, 2004, 121: 472–480
[39]Kovalchuk O, Burke P, Arkhipov A, Kuchma N, Jill James S, Kovalchuk I, Pogribny I. Genome hypermethylation in Pinus silvestris of Chernobyl—A mechanism for radiation adaptation? Mutation Res, 2003, 529: 13–20
[40]Kumar A, Bennetzen J L. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479–532
[41]Feschotte C, Jiang N, Wessler R S. Plant retrotransposable elements: Where genetics meets genomics. Nat Rev Genet, 2002, 3: 329–341
[42]Cheng C, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genom, 2006, 276: 378–390
[43]Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33: 102–106
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[7] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[10] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[11] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[12] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[13] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[14] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[15] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!