欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1451-1457.doi: 10.3724/SP.J.1006.2009.01451

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析

段艳凤,刘杰,卞春松,段绍光,徐建飞,金黎平*   

  1. 中国农业科学院蔬菜花卉研究所,北京100081
  • 收稿日期:2008-12-29 修回日期:2009-04-25 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 金黎平,Tel: 010-82109543
  • 作者简介:E-mail: duanyanfeng1110@163.com; Tel: 13810761380
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2007BAD49B01),引进国际先进农业科学技术计划(948计划)项目(2006-G12),农业部园艺作物遗传改良重点开放实验室资助。

Construction of  Fingerprinting and Analysis of Genetic Diversity with SSR Markers for Eighty-Eight Approved Potato Cultivars(Solanum tuberosum L.)in China

DUAN Yan-Feng,LIU Jie,BIAN Chun-Song,DUAN Shao-Guang,XU Jian-Fei,JIN Li-Ping*   

  1. Institute of Vegetables and Flowers of Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2008-12-29 Revised:2009-04-25 Published:2009-08-12 Published online:2009-06-10
  • Contact: JIN Li-Ping,Tel: 010-82109543
  • About author:E-mail: duanyanfeng1110@163.com; Tel: 13810761380

摘要:

为对马铃薯品种鉴别、优良杂交组合选配提供分子水平上的依据,利用SSR标记构建了中国2000—2007年审定的88个马铃薯品种的指纹图谱并进行了遗传多样性分析。以138SSR引物对16份遗传差异较大的马铃薯材料的基因组DNA进行了扩增,筛选出10对多态性高、谱带清晰的引物。利用10SSR引物对全部供试材料进行扩增及电泳检测,共检测到135个等位位点,其中133个为多态性位点,多态性比率达98.52%。每对SSR引物扩增出的等位位点数7~22个,平均13.5个,多态性信息量变化范围为0.7604~0.9375,平均0.8501。通过对电泳检测结果的统计分析,利用S180S25S7S151S184S1926对引物构建了88份供试材料的SSR指纹图谱。聚类分析表明,在相似系数0.620处,所有供试材料被被聚为一类,在相似系数0.652处,81.8%的材料仍然聚在一起,从分子水平上表明供试材料遗传基础非常狭窄。聚类分析结果与供试材料系谱来源有较好一致性,同一栽培区域育成的品种在不同程度上聚在一类。

关键词: 马铃薯, 审定品种, SSR标记, DNA指纹图谱, 遗传多样性分析

Abstract:

Potato (Solanum tuberosum L.) is one of the most important food crops in the world. Approved potato cultivars have contributed a lot not only to potato production but also to varietal improvement as germplasm resource, and about 110 potato cultivars were approved during 2000–2007 in China. It is necessary to make potato cultivar identification and genetic relationship analysis for seed production, germplasm management, plant variety protection and breeding practice. Currently, the simple sequence repeats (SSRs) are preferred as molecular markers due to their highly desirable properties. In this study, for the aim of cultivar identification and parents combination at the molecular level, SSR markers were employed to analysis on fingerprinting and genetic diversity of 88 potato cultivars approved in China during 2000–2007. Ten of one hundred and thirty-eight pairs of SSR primers were screened out based on sixteen accessions distinct in genetics. The 10 primer pairs amplified a total of 135 alleles (including 133 polymorphic alleles) among the 88 cultivars, and the ratio of polymorphism was as high as 98.52%.Alleles amplified by each pair of primers ranged from 7 (primer S7) to 22 (primer S189), with a mean of 13.5. The polymorphic information content values (PIC) ranged from 0.7604 (primer S192) to 0.9375 (primer S189), with a mean of 0.8501. The fragment sizes varied from 80 to 380 bp. The fingerprinting of 88 cultivars was constructed by 6 pairs of primers of S180, S25, S7, S151, S184, and S192. Eighty-seven out of eighty-eight cultivars were univocally identified by using only five SSR primers (S180, S25, S7, S151, and S184). UPGMA cluster analysis of genetic similarity showed that all the materials were clustered in to one group at the genetic similarity of 0.620, and 81.8% of the cultivars were still clustered together at the genetic similarity of 0.652.The genetic relationships of cultivars were identical to the family tree basically. It’s indicated that the genetic basis of potato cultivars in China is narrow, and the genetic relationship of the potato cultivars derived from the same district is similar. Thefingerprinting and analysis of genetic diversity in this studygave a basis for exploration and utilization of approved potato cultivars as germplasm resources.

Key words: Potato, Approved cultivars, SSR markers, DNA fingerprinting, Genetic diversity



[1] Jin L-P(金黎平), Qu D-Y(屈冬玉), Xie K-Y(谢开云), Bian C-S(卞春松), Duan S-G(段绍光). Research progress of Chinese potato germplasm and breeding technology. Seed (种子), 2003, (5): 98-100 (in Chinese)



[2] Norero N, Malleville J, Huarte M, Feingold S. Cost efficient potato (Solanum tuberosum L.) cultivar identification by microsatellite amplification. Potato Res, 2002, 45: 131-138



[3] Demeke T, Kawchuk L M, Lynch D R. Identification of potato cultivars and clonal variants by random amplified polymorphic DNA analysis. Am Potato J, 1993, 70: 561-570



[4] Jin G-H(金光辉). Germplasm analysis of main potato cultivars in China. Crop Germplasm Res (作物品种资源), 1999, (4): 12-13 (in Chinese)



[5] Milbourne D, Meyer R C, Collins A J, Ramsay L D, Gebhardt C, Waugh R. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gen Genet, 1998, 259: 233-245



[6] McGregor C E, Lambert C A, Greyling M M, Louw J H, Warnich L. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica , 2000, 113: 135-144



[7] McGregor C E, Greyting M, Warnieh L. The use of simple sequence repeats (SSRs) to identify commercially important potato (Solarium tuberosum L.) cultivars in South Africa. South Africa J Plant Soil, 2000, 17: 177-180



[8] Barandalla L, Galarreta J I R D, Rios D, Ritter E. Molecular analysis of local potato cultivars from Tenerife Island using microsatellite markers. Euphytica, 2006, 152: 283-291



[9] Ispizúa V N, Guma I R, Feingold S, Clausen A M. Genetic diversity of potato landraces from northwestern Argentina assessed with simple sequence repeats (SSRs). Genet Resour Crop Evol, 2007, 54: 1833-1848



[10] Jones J R, Walker R T. Isolation and analysis of the deoxyribonucleic acid of M ycoplasm a m ycoides var. capri. Nature, 1963, (198): 588-589



[11] Ghislain M, Spooner D M, Rodríguez F, Villamón F, Núñez J, Vásquez C, Waugh R, Bonierbale M. Selection of highly informative and user-friendly microsatellites (SSRs)for genotyping of cultivated potato. Theor Appl Genet, 2004, 108: 881-890



[12] Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet, 2005, 111: 456-466



[13] Kawchuk L M, Lynch D R, Thomas J, Penner B, Sillito B, Kulcsar F. Characterization of Solanum tuberosum simple sequence repeats and application to potato cultivar identification. Am Potato J, 1996, 73: 325-335



[14] Ashkenazi V, Chani E, Lavi U, Levy D, Hillel J, Veilleux R E. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 2001, 44: 50-62



[15] Di H(邸宏), Chen Y-L(陈伊里), Jin L-P(金黎平). Genetic diversity analysis of chinese main potato cultivars by RAPD and AFLP makers. Acta Agron Sin (作物学报), 2006, 32(6): 899-904 (in Chinese with English abstract)



[16] Jin L-P(金黎平). Genetic dissection of processing quality and important agronomic traits in diploid potato (Solanum tuberosum L.). PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, 2006 (in Chinese with English abstract)



[17] Di H(邸宏), Chen Y-L(陈伊里), Jin L-P(金黎平). Genetic diversity analysis of some Chinese cultivated potato varieties using AFLP markers. Acta Hort Sin (园艺学报), 2006, 33(6): 1349-1352 (in Chinese with English abstract)



[18] Spooner D M, Bamberg J B. Potato genetics resources: Sources of resistance and systematics. Am Potato J, 1994, 71: 325-337

[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[10] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[11] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[12] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[13] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[14] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[15] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!