欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1691-1697.doi: 10.3724/SP.J.1006.2009.01691

• 耕作栽培·生理生化 • 上一篇    下一篇

植物生长物质对大豆叶片形态解剖结构及光合特性的影响

冯乃杰1,郑殿峰1,*,赵玖香1,祖伟2,杜吉到1,张玉先1,梁喜龙1   

  1. 1黑龙江八一农垦大学农学院作物化控研究室,黑龙江大庆163319;2东北农业大学农学院,黑龙江哈尔滨150031
  • 收稿日期:2008-12-24 修回日期:2009-04-16 出版日期:2009-09-12 网络出版日期:2009-07-04
  • 通讯作者: 郑殿峰, E-mail: zdffnj@263.net; Tel: 0459-6819175
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD21B01),黑龙江省“十一五”科技攻关项目(GA06B101-1-1),国家教育部博士点基金联合资助项目(20070223002 )资助。

Effect of Plant Growth Substances on Morphological and Anatomical Structure of Leaf and Photosynthetic Characteristics in Soybean

FENG Nai-Jie1,ZHENG Dian-Feng1,*,ZHAO Jiu-Xiang1,ZU Wei2,DU Ji-Dao1,ZHANG Yu-Xian1,LIANG Xi-Long1   

  1. 1 Crop Growth and Development Regulation Laboratory, College of Agronomy, Heilongjiang August First Land Reclamation University, Daqing 163319, China; 2 College of Agronomy, Northeast Agricultural University, Harbin 150031, China
  • Received:2008-12-24 Revised:2009-04-16 Published:2009-09-12 Published online:2009-07-04
  • Contact: ZHENG Dian-Feng, E-mail: zdffnj@263.net; Tel: 0459-6819175

摘要:

2006年度在黑龙江八一农垦大学实验农场大田栽培条件下,以大豆垦农4为试材,选用植物生长物质为2-N,N-二乙氨基乙基己酸酯(DTA)、氯化胆碱(CC)SOD模拟物(SODM),于开花始期叶面喷施,对大豆叶片形态解剖结构和光合指标进行了研究。结果表明,处理的叶片栅栏组织厚度及栅海比增加,栅栏组织细胞排列的紧密程度为SODMDTA CCCK各处理不同程度地增加了单个细胞的叶绿体数、单个叶绿体中的基粒片层数和淀粉粒数,降低了叶绿体中的嗜锇体数;SODMDTA分别显著、极显著增加了叶绿体的基粒数;各处理普遍提高了生育后期叶片Chl aChl bChl(a+b)含量,增加了Chl b/a比值;在较干旱条件下,与对照相比,各处理能使叶面积指数和光合势达到最大值时间提前,增加了籽粒干物质积累时期的总光合势,提高了净光合速率。

关键词: 大豆, 植物生长物质, 形态解剖, 光合特性

Abstract:

Many soybean [Glycine max (L.) Merr.] morphological and physiological regulations responding to plant growth substances have been reported. Related researches showed that plant growth substances could effectively control lodging, increase leaf area index, promote photosynthesis, reduce productive abscission and improve yield and quality in soybean production. Plant growth substances thorough adjusting inner hormone control soybean’s whole process of growth and development, at the same time possibly affect the structure of soybean organs, including root, stem, leaf, and productive organs, on which there are a little report. Microtechnique and ultramicrotechnique have triumphantly applied in the researches on the changes of fibre texture and ultrastructure in plant caused by nutrient elements and environment factors, which provides availibity to research the effects of plant growth substances on the structure of soybean organs. The present study was carried out in an attempt to compare anatomical structure and photosynthetic characteristics of cultivar Kennong 4, Treated with three plant growth substances In the field of experiments on trail farm of Heilongjiang August-First Land Reclamation University in 2006. The selected secure plant growth substances Diethyl anlinoethyl (DTA), Ckolirte chloride (Cc), and SOD simulation material (SODM), were applied by leaf-spraying at the beginning of blossom stage (R1). 30 days later, at the beginning seed stage (R5), the functional leaves were sampled to compare fibre texture and ultrastructure by microtechnique and ultramicrotechnique. Photosynthetic characteristics, such as leaf index, photosynthetic pigment content, photosynthetic potential and photosynthetic rate, were measured every 10 days after the treatments.The results indicated that the plant growth substances caused the changes of both anatomical structure of leaf and photosynthetic characteristics. Under light microscope, we found that, compared with control, DTA, CC, and SODM increased palisade tissue thickness and ratio of palisade/spongy of leaf. The tight degree of palisade tissue arrangement,was different in treatment showing the order of SODM> DTA> CC> CK. DTA, CC, and SODM increased the number of chloroplast single cell, granule lamella and starch grains in chloroplast, while reduced the number of osmophilic globuli in the chloroplast. SODM, DTA increased granule number in chloroplast significantly. In the investigation of photosynthetic characteristics, we found that, compared with control, DTA, SODM, and CC increased the contents of Chl a, Chl b, Chl(a+b) in leaf and the ratio of Chl b/a. DTA, SODM, and CC advanced the time to maximum leaf area index and leaf area duration (LAD), increased total LAD and photosynthetic rate during grain filling period under water stress. From above, we drew a conclusion that plant growth substances could at least partially regulate the structure of soybean organs, fibre texture and ultrastructure of soybean leaf, which is helpful to promote photosynthesis, showing the consistency between anatomical structure and physiological function.

Key words: Soybean, Plant growth substances, Morphological and anatomical, Photosynthetic characteristic

[1] Davies D D. The Biochemistry of Plants. New York: Academic Press Inc, 1980. pp 86-96

[2] Hatch M D, Boardman N K. The Biochemistry of Plants. New York: Academic Press Tnc, 1981. pp 37-46

[3] Hall D O, Rao K K. Photosynthesis, 4th edn. London: Edwa Atnold Limited, 1988. pp 15-21

[4] Salisbury F B, Ross C W. Plant Physiology. California: California Wadsworth Publishing Company Inc. 1991. pp 87-111

[5]Pan R-Z(潘瑞炽). Plant Physiology (植物生理学). Beijing: Higher Education Press,1995. pp 87-117 (in Chinese)

[6] Li P-Q(李培庆), Chen S-K(陈善坤).Studies on effects of PP-(333) on the dynamic change of C-N metabolism in soybean at different development stages and it s relation to the yield formation of soybean. Acta Agric Univ Jiangxiensis (江西农业大学学报), 1992, 14(4): 366-370(in Chinese with English abstract)

[7] Wang M(王敏), Yao W-C(姚维传), Zhang C-Y(张从宇). Effects of plant growth regulator on seedling growth under drought stress in soybean.J Soil Water Conserv (水土保持学报), 2005, 19(4): 190-193(in Chinese with English abstract)

[8] Zhang M-C(张明才), He Z-P(何钟佩), Tian X-L(田晓莉), Duan L-S(段留生), Wang B-M(王保民), Zhai Z-X(翟志席), Dong X-H(董学会), Li Z-H(李召虎). Effects of plant growth regulator SHK-6 on physiological function of soybean leaves under water deficiency.Acta Agron Sin (作物学报), 2005, 31(9): 1215-1220 (in Chinese with English abstract)

[9] Yu H-Q(于海秋), Peng X-X(彭新湘), Yan X-L(严小龙), Cao M-J(曹敏建). Effect of phosphorus deficiency on microstructure and photosynthesis in soybean leaves. J Jilin Agric Univ (吉林农业大学学报), 2006, 28(2): 127-132 (in Chinese with English abstract)

[10] Zhang G-R(张桂茹), Du W-G(杜维广), Man W-Q(满为群), Li G-Q(李桂芹), Gui M-Z(桂明珠), Wang X-D(王学东), Ge Q-Y(戈巧英), Hao N-B(郝乃斌). Study on leaf comparative anatomy of different genotypes of soybean. Chin Bull Bot (植物学通报), 2002, 19(2): 208-214 (in Chinese with English abstract)

[11] Yu Y(于颖), Liu Y-Y(刘元英), Luo S-G(罗盛国), Peng X-L(彭显龙). Effects of selenium on soybean chloroplast ultra-structure and microelement content of soybean leaves under continuous cropping stress. Chin J Appl Ecol (应用生态学报), 2003, 14(4): 573-576 (in Chinese with English abstract)

[12] Liu J(刘杰), Liu L-J(刘丽君), Wu J-J(吴俊江), Chen Y-L(陈伊里). Progress and prospect of research on soybean ultrastructures. Soybean Sci (大豆科学), 2004, 23(3): 228-231 (in Chinese with English abstract)

[13] Tian X-L(田晓莉), Tan W-M(谭伟明), Li Z-H(李召虎), Wang B-M(王保民), He Z-P(何钟佩), Duan L-S(段留生). The effects of mixture of DPC and DTA-6 on seedlings of insect-resistant transgenic cotton. Cotton Sci (棉花学报), 2006, 18(1): 3-7 (in Chinese with English abstract)

[14] Lin J-H(林加涵), Wei W-L(魏文铃), Peng X-X(彭宣宪). Modern BiologyExperiments (现代生物学实验). Higher Education Press, 2002. pp 70-82 (in Chinese)

[15] Wang X-D(王学东), Cang J(苍晶), Zhang P(张鹏), Cui L(崔琳). Observation of soybean funiculus of transfer tissue.J Chin Electron Microscopy Soc (电子显微学报), 2004, 23(4): 354-354 (in Chinese)

[16] Zhao H-J(赵会杰), Zou Q(邹琦), Zhang X-Y(张秀英). Comparison between two wheat varieties with different spike type in carbohydrate metabolism during late growth period. Acta Agron Sin (作物学报), 2002, 28(5): 654-659 (in Chinese with English abstract)

[17] Zhang X-Z(张宪政). Research Method for Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. p 68 (in Chinese)

[18] Chaves M M. Effects of water deficits on carbon assimilation. J Exp Bot, 1991, 42: 1-16

[19] Ma G-Y(马国英), Wu Y-Y(吴源英), Xu X-Z(徐锡忠). Comparative studies on leaf blade photosynthetic characteristic and chloroplast ultramicrostructure of different wheat cultivars. Plant Physiol Commun (植物生理学通讯), 1991, 27(4): 255-259 (in Chinese with English abstract)

[20] Fan Y-P(范燕萍), Li H-L(李慧玲), Li H-J(李浩健). Pigment composition and ultrastructural difference of chloroplast in three kinds of variegation leaf of cymbidium sinense. J South China Agric Univ (华南农业大学学报), 2006, 27(2): 8-12 (in Chinese with English abstract)

[21] Grover A, Mohanty P. Leaf Senescence-induced alterations in structure and function of higher plant chloroplasts. In: Abrol Y P, Mohany P, eds. Photosynthesis: Photoreactions to Plant Productivity. Dordrecht: Kluwer Academic Publishers, 1992. pp 225-255

[22] Tong Z-Y(童朝阳), Han L-M(韩丽梅), Zou Y-J(邹永久). Effect of soybean Specificy complex fertilizer of ultrastructre of chloroplast under different cropping systems. Soybean Sci (大豆科学), 1998, 17(4): 369-371 (in Chinese with English abstract)

[23]Zhang H-S(张恒善), Cheng Y-X(程砚喜), Wang D-Q(王大秋), Xiang S-H(项淑华), Gao M(高敏), Wang X-F(王雪飞), Niu J-G(牛建光).Correlation analysis of variation in chlorophyll content and yield in pod period of soybean. Soybean Sci (大豆科学), 2001, 20(4): 276-278(in Chinese with English abstract)

[24] Demming-Adams B, Adams W W III. The role of xanthophylls cycle carotenoids in the protenction of photosynthesis. Trends Plant Sci, 1996, 1: 21-26

[25] Liu Z-Q(刘贞琦), Liu Z-Y(刘振业), Ma D-P(马达鹏), Zeng S-F(曾淑芬).A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agron Sin (作物学报), 1984, 10(1): 57-62 (in Chinese with English abstract)

[26] Dong Z(董钻). Soybean Yield Physiology (大豆产量生理). Beijing: China Agriculture Press, 1999. pp 138-141 (in Chinese)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!