作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2064-2072.doi: 10.3724/SP.J.1006.2009.02064
于振1,李倩1,赵建叶1,江帆1,王振英1,*,彭永康1,*,解超杰2,刘志勇2,孙其信2,杨作民2
YU Zhen1,LI Qian1,ZHAO Jian-Ye1,JIANG Fan1,WANG Zhen-Ying1,*,PENG Yong-Kang1*,XIE Chao-Jie2,LIU Zhi-Yong2,SUN Qi-Xin2,YANG Zuo-Min2
摘要:
用华北地区流行的白粉菌15号生理小种,感染强抗白粉病的栽培小麦Brock和对白粉病敏感的小麦京411,通过蛋白质组技术分析其差异蛋白。结果表明,Brock经白粉菌感染12 h后,至少有6个蛋白质斑点(43 kD/pI 6.7、43 kD/pI 6.9、43 kD/pI 7.2、28 kD/pI 5.8、26 kD/pI 5.5和26 kD/pI 6.5)表达量明显增加;感染3 d后,有5个蛋白质斑点(48 kD/pI 5.6、43 kD/pI 6.9、43 kD/pI7.2、28 kD/pI5.8和26 kD/pI5.5)表达量增加;感染5 d后,有12个新的蛋白质斑点(16 kD/pI 7.6、42 kD/pI 6.5、40 kD/pI 4.8、40 kD/pI 4.6、31 kD/pI 5.7、16 kD/pI 4.6、20 kD/pI 8.3、50 kD/pI 6.7、48 kD/pI 6.6、28 kD/pI 5.7、23 kD/pI 4.8和25 kD/pI 4.7 )被诱导合成,2种蛋白质斑点(26 kD/pI 4.6和17 kD/pI 7.9)消失。京411经白粉菌感染12 h后,3个蛋白质斑点(21 kD/pI 6.4、18 kD/pI 5.4和14 kD/pI 7.0)表达量增加;感染3 d后,有2个蛋白质斑点(80 kD/pI 5.4和14 kD/pI 7.0)表达量增加,1个蛋白质斑点(16 kD/pI 5.4)表达量下降;感染5 d后,有3个蛋白质斑点(50 kD/pI 7.3、40 kD/pI 7.3和24 kD/pI 7.2)表达量增加,2个斑点(40 kD/pI 4.8和14 kD/pI 7.2)表达量下降,但没有发现新的蛋白质合成。对Brock中诱导产生的12个新蛋白质斑点,利用MALDI-TOF-MS方法,于NCBI进行数据查询,其中有6个分别属于F-box亮氨酸高度重复蛋白、重金属转运/解毒蛋白、β-1,3-葡聚糖酶(两个同工体)、β-1,3-葡聚糖酶前体、锌指蛋白。功能查询表明,上述6个蛋白参与细胞周期调控、发育、激素响应、基因转录和病害防御等。推测Brock和京411感染白粉菌后,出现的蛋白质组变化可能与各自的抗、感白粉病特性有关。
[1] Liu J-Y(刘金元), Tao W-J(陶文静), Duan X-Y(段霞瑜), Xiang Q-J(向齐君), Liu D-J(刘大钧), Chen P-D(陈佩度). Molecular marker assisted identification of Pm genes involved in the powdery mildew resistant wheat cultivars (lines). Acta Phytopathol Sin (植物病理学报), 2000, 30(2): 133-139 (in Chinese with English abstract) [2] Liu J-Y(刘金元), Liu D-J(刘大钧). Progress of the study on wheat powdery mildew resistant genes. Acta Phytopathol Sin (植物病理学报), 2000, 30(4): 289-295 (in Chinese with English abstract) [3] Yu L, Niu J S, Ma Z Q, Chen P D, Qi L L, Liu D J. Cloning, characterization and chromosome localization of two powdery mildew resistance-related gene sequences from wheat.Acta Bot Sin, 2002, 44: 1438-1444 [4] Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538 [5] Wang Z Y, Zheng Q, Peng Y K, Xie C J, Sun Q X, Yang Z M. Identification of random amplified polymorphism DNA and simple sequence repeat markers linked to powdery mildew resistance in common wheat cultivar Brock. Plant Prod Sci, 2004, 7: 319-323 [6] Wang Z Y, Zhao P, Chen H, Peng Y K, Xie C J, Sun Q X, Yang Z M. Random amplified polymorphic DNA and sequence characterized amplified region marker linked to unknown powdery mildew resistance gene in wheat cultivar Brock. Plant Prod Sci, 2005, 8: 578-585 [7] Wang Z-Y(王振英), Zhao H-M(赵红梅), Hong J-X(洪敬欣), Chen L-Y(陈丽媛), Zhu J(朱婕), Li G(李刚), Peng Y-K(彭永康), Xie C-J(解超杰), Liu Z-Y(刘志勇), Sun Q-X(孙其信), Yang Z-M(杨作民). Identification and analysis of four novel molecular markers linked to powdery mildew resistance gene Pm21 in 6VS chromosome short arm of Haynaldia villosa. Acta Agron Sin (作物学报), 2007, 33: 605-611 (in Chinese with English abstract) [8] Zhang W-J(张维佳), Li C-Z(李纯正), Huang H-Q(黄海泉), Wang Z-Y(王振英), Peng Y-K(彭永康). Different proteins in mitochondrial proteome of T-tape maize cytoplasmic male-sterile line and its maintainer line. J Mol Cell Biol (分子细胞生物学报), 2007, 40(6): 410-418 (in Chinese with English abstract) [9] Balmer Y, Vensel W H, DuPont F M, Buchanan B B, Hurkman W J. Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot, 2006, 57: 1591-1602 [10] Zhao C F, Wang J Q, Cao M L, Zhao K, Shao J M, Lei T T, Yin J N, Hill G G, Xu N Z, Liu S Q. Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics, 2005, 5: 961-972 [11] Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5: 3162-3172 [12] Yan S P, Tang Z C, Su W A, Sun W N. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235-244 [13] Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131-1145 [14] Frédérique R, Pascale G, Dominique V, Michel Z. Protein changes in response to progressive water deficit in maize. Plant Physiol, 1998, 117: 1253-1263 [15] Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4: 1122-1133 [16] Antonio J C, Christine C, Nathalie Z, Christian M, Emmanuelle L, Alain V D, Christophe C. Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot, 2005, 56: 2783-2795 [17] Sun T Kim, Sang G K, Du H H, Sun Y K, Han J K, Byung H L, Jeung J L, Kyu Y K. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus Magnaporthe grisea.Proteomics, 2004, 4: 3569-3578 [18] Curto M, Camafeita E, Lopez J A, Maldonado A M, Rubiales D, Jorrín J V. A proteomic approach to study pea (Pisum sativum)responses to powdery mildew (Erysiphe pisi). Proteomics, 2006, 6: 163-174 [19] Wang Y, Yang L M, Xu H B, Li Q F, Ma Z Q, Chu C G. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics, 2005, 5: 4496-4503 [20]Feng D-S(封德顺), Xu Q-Y(徐勤迎), Wang H-G(王洪刚), Tian J-C(田纪春). Changes of protein in wheat leaf after the infection of powdery mildew. Acta Agric Boreali-Sin (华北农学报),2007, 22:123-126 (in Chinese with English abstract) [21] Wang Z, Zhao P, Chen H, Peng Y, Xie C, Sun Q, Yang Z. Identification of RAPD markers and development of SCAR markers linked to a powdery mildew resistance gene, and their location on chromosome in wheat cultivar Brock. Plant Prod Sci, 2005, 8: 578-585 [22] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anual Biochem,1976, 72: 248-254 [23] O’Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem,1975, 250: 4007-4021 [24] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685 [25] Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylami de gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis, 1988, 9: 255-262 [26] Xie D X, Feys B F, James S, Nieto M, Turner J G.COI1: An Arabidopsis gene required for jasmonate regulateddefense and fertility. Science, 1998, 280: 1091-1094 [27] Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J W, Elledge S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86: 263-274 [28] Ward E R, Payne G B, Moyer M B. Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol, 1991, 96: 390-397 [29] Selitrennikoff C P. Antifungal proteins. Appl Environ Microbiol, 2001, 67: 2883-2894 [30] Anfoka G, Buchenauer H. Systemic acquired resistance in tomato against Phytophthora infestans by pre-inoculation with tobacco necrosis virus. Physiol Mol Plant Pathol, 1997, 50: 85-101 [31] Esquerré-Tugaé M T, Boudart G, Dumas B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem, 2000, 38: 157-163 [32] Klarzynski O, Plesse B, Joubert J M. Linear β-1,3-glucanase are elicitors of defense responses in tobacco. Plant Physiol, 2000, 124: 1027-1037 [33] Ham K S, Wu S C, Darvill A G. Fungal pathogens secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-β-1,3-glucanase. Plant J, 1997, 11: 169-179 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[9] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[10] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
|