作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1909-1915.doi: 10.3724/SP.J.1006.2009.01909
孙婷1,刘鹏1,*,郑人卫1,2,谢忠雷3,罗虹1
SUN Ting1,LIU Peng1,*,ZHENG Ren-Wei1,2,XIE Zhong-Lei3,LUO Hong1
摘要:
设置不同Al3+浓度对青茶进行50 d处理,调查茶树铝含量和铝的化学配位形态。结果表明,茶树体内的铝大多以有机态或螯合态形式存在;茶树老叶具有高积累铝的特性,但以5 mmol L-1铝处理时,运输到叶片的铝减少,积累于茶树根部的铝增多。利用27Al NMR技术检测表明,茶树各器官中普遍存在Al13的强烈共振吸收峰;在各器官中还出现–0.38×10-6处和–0.17×10-6处的微弱吸收峰,为目前尚未检出的铝络合物形式;在5 mmol L-1 Al3+处理下,青茶老叶中含有更多的Al-复合物,包括Al-草酸盐(1∶2)、Al-草酸盐(1∶2)和Al-磷酸复合物,说明茶树体中的铝通过与其他物质形成络合物以降低铝的毒性。
[1] Taylor G J. Current views of the aluminum stress response: The physiological basis of tolerance. Curr Top Plant Biochem Physiol, 1991, 10: 57-93 [2] Chenery E M. A preliminary stydy of aluminum and the tea bush. Plant Soil, 1955, 6: 174-200 [3] Matsumoto H, Hirasawa E, Morimura S, Takahashi E. Localization of aluminum in tea leaves. Plant Cell Physiol, 1976, 17: 627-631 [4] Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in Hydrangea: Identification of Al for in the leaves. Plant Physiol, 1997, 113, 1033-1039 [5] Ma J F, Zheng S J, Hiradate S, Matsumoto H. Detoxificaion aluminum with buckwheat. Nature, 1997, 390: 569-570 [6] Watanabe T, Osaki M, Yoshihara T, Tadano T. Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. Plant Soil, 1998, 201: 165-173 [7] Ma J F, Hiradate S. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta, 2000, 211, 355-360 [8] Watanabe T, Osaki M. Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil, 2001, 237: 63-70 [9] Nagata T, Hayatsu M, Kosuge N. Identification of aluminum forms in tea leaves by 27Al NMR. Phytochemistry, 1992, 31: 1215-1218 [10] Liu L-N(刘丽娜), Yan B-Z(严宝珍), Hu G-F(胡高飞), Wang M(王梅). Determination of aluminum by 27Al nuclear magnetic resonance spectroscopy. Environ Chem (环境化学), 2005, 24(1): 108-109 (in Chinese) [11] Nagata T, Mukai T, Goto T. Analysis of chemical forms of aluminum in tea infusions by using 27Al-NMR. Jpn Soc Food Sci Technol, 1994, 56: 1474-1475 [12] Liu Y-H(刘拥海), Peng X-X(彭新湘), Yu L(俞乐). Difference in oxalate content between buckwheat and soybean leaves and its possible cause. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2004, 30(2): 201-208 (in Chinese with English abstract) [13] Qiu G-K(邱光葵), Pang S-W(庞叔薇). Spectrophotometric determination of activated aluminum in soil using eriochrome cyanine R. J Instrum Anal (分析测试学报), 1989, 8(4): 68-71 (in Chinese with English abstract) [14] Xie Z-M(谢正苗), Huang M-H(黄铭洪), Ye Z-H(叶志鸿). Mechanisms for aluminum uptake and accumulation by aluminum excluders and hyperaccumulators. Acts Ecol Sin (生态学报). 2002, 22(10): 1653-1659 (in Chinese with English abstract) [15] Xie Z-L(谢忠雷), Dong D-M(董德明), Du Y-G(杜尧国), Liu C-M(刘春明), Wang S-T(王胜天), Li Y-F(李迎芳), Li Y(李岩). Relationship between Al content in tea leaves and soil pH value. Acta Sci Nat Univ Jilinensis (吉林大学学报), 1998, 2(4): 89-92 (in Chinese with English abstract) [16] Qin H-L(秦海林), Zhao T-Z(赵天增). Studies on identification of traditional chinese herbal medicines by 1H NMR.Acta Pharm Sin (药学学报),1999, 34(1): 58-62 (in Chinese with English abstract) [17] Sarah L H, Peter A J, Ian D J. Comparative X-ray and 27Al NMR spectroscopic studies of the speciation of aluminum in aqueous systems: Al(III) complexes of N(CH2CO2H)2 (CH2CH2OH). J Inorgranic Biochem, 1995, 59: 785-794 [18] Shen R F, Takashi L S, Ma J F. Form of Al changes with Al concentration in leaves of buckwheat. J Exp Bot,2004, 55: 131-136 [19] Parker D R, Bertsch P M. Formation of Al13 tridecameric polycation under diverse synthesis conditions. Environ Sci Technol, 1992, 26, 914-921 [20] Wang X-L(王先龙), Zou G-W(邹公伟), Bi S-P(毕树平). Advances in determination of aluminum in environmental and biological materials by 27Al nuclear magnetic resonance spectroscopy. Chin J Inorganic Chem(无机化学学报), 2000, 4(16): 548-560 (in Chinese with English abstract) [21] Wu Q-Y(吴琼鸯), Zheng W-W(郑伟伟), Luo L(罗亮), Liu P(刘鹏), Xu G-D(徐根娣). Effect of aluminium on the physiological characteristics of tea root system. Hubei Agric Sci (湖北农业科学), 2005, (3): 80-82 (in Chinese with English abstract) [22] Luo L(罗亮), Xie Z-L(谢忠雷) Liu P(刘鹏), Xu G-D(徐根娣), Luo H(罗虹). Physiological response of plant to aluminum toxicity. J Agro-Environ Sci (农业环境科学学报), 2006, 25(2): 305-308 (in Chinese with English abstract) [23] Wu B-H(伍炳华), Song Y-W(宋允文), Han W-Y(韩文炎). Effect of aluminum on root growth and nitrogenous nutrition. China Tea (中国茶叶), 1995, (2): 197-200 (in Chinese) [24] Chenery E M. A Preliminary study of aluminum and the tea bush. Plant Soil, 1955, 6, 174-200 [25] Matsumoto H, Hirasawa E, Morimura S, Takahashi E. Location and absorption of aluminum in pea roots and its binding to nucleic acids. Plant Cell Physiol, 1976, 17: 627-631 [26] Liao W-Y(廖万有). Effect and research expectation of aluminum on tea. Tea Fujian (福建茶叶), 1995, (4): 13-17 (in Chinese) [27] Sun Y(孙云), Zheng J-K(郑金凯). Aluminum content analyse of Wulong tea. Tea Fujian (福建茶叶), 1994, (1): 15-19 (in Chinese) [28] Le V H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and change in cell-wall components of squash seedings. Plant Physiol, 1994, 106: 971-976 [29] Ruan J-Y(阮建云), Wang G-Q(王国庆), Shi Y-Z(石元值), Ma L-F(马立锋). Aluminium in tea soil, rhizosphere soil and the characteristics of Al uptake by tea plant. J Tea Sci (茶叶科学), 2003, 23: 16-20 (in Chinese with English abstract) [30] Luo H(罗虹), Liu P(刘鹏), Xie Z-L(谢忠雷), Xu G-D(徐根娣), Jin L-H(金蕾红). Effect of aluminum on microstructure of tea plant’s leaves. J Zhejiang Norm Univ (浙江师范大学学报), 2006, 29(4): 439-442 (in Chinese with English abstract) [31] Yang X-D(杨小弟), Zhang F-P(章福平), Wang X-L(王先龙), Gan N(干宁), Zou G-W(邹公伟), Bi S-P(毕树平). Novel analytical techniques for fractionation and speciation of aluminum Ⅲ in environmental and biological systems. Chin J Anal Chem (分析化学), 2003, 31(9): 111-113 (in Chinese with English abstract) [32] Nagata T, Hayatsu M, Kosuge N. Identification of aluminum forms in tea leaves by 27Al NMR. Phytochemistry, 1992, 31: 1215-1218 [33] Nagata T, Hayatsu M, Kosuge N. Aluminium kinetics in the tea plant using 27Al and 19F NMR. Phytochemistry, 1993, 32: 771-775 [34] Mhatre S N, Iyer R K, Moorthy P N. Characterization of aluminium complexes in tea extract: 27Al NMR Studies. Magnet Resonance Chem, 1993, 2: 169-175 [35] Morita A, Horie H, Fujii Y, Takatsu S, Watanabe N, Yagi A, Yokota H. Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry, 2004, 65: 2775-2780 [36] Ma J F, Ryan P R, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci, 2001, 6: 273-278 [37] Morita A, Suzuki R, Yokota H, Effect of ammonium application on the oxalate content of tea plant (Camellia sinensis L.). Soil Sci Plant Nutr, 2004, 50:763-769 [38] Kerven G L, Larsen P L, Bell L C, Edwards D G. Quantitative 27Al NMR spectroscopic studies of Al (III) complexes with organic acid ligands and their comparison with GEOCHEM predicted values. Plant Soil, 1995, 171: 35-39 [39] Ruan J, Ma L, Shi W, Han W. Uptake of fluoride by tea plant (Camellia sinensis L.) and the impact of aluminium. J Sci Food Agric, 2003, 83: 1342-1348 |
[1] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[2] | 彭章, 童华荣, 梁国鲁, 石艺琦, 袁连玉. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报, 2018, 44(03): 463-470. |
[3] | 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425. |
[4] | 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020. |
[5] | 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717. |
[6] | 唐湖,郝心愿,王璐,肖斌,王新超,杨亚军. 茶树越冬芽在休眠与萌发时期的物质交流变化及其分子调控[J]. 作物学报, 2017, 43(05): 669-677. |
[7] | 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217. |
[8] | 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 . |
[9] | 钱文俊,岳川,曹红利,郝心愿,王璐,王玉春,黄玉婷,王博,王新超,肖斌,杨亚军. 茶树中性/碱性转化酶基因CsINV10的克隆与表达分析[J]. 作物学报, 2016, 42(03): 376-388. |
[10] | 王博,曹红利,黄玉婷,胡玉荣,钱文俊,郝心愿,王璐,杨亚军,王新超. 茶树生长素外运载体基因CsPIN3的克隆与表达分析[J]. 作物学报, 2016, 42(01): 58-69. |
[11] | 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055. |
[12] | 马春雷,姚明哲,王新超,金基强,马建强1陈亮. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达[J]. 作物学报, 2015, 41(02): 240-250. |
[13] | 曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*. 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位[J]. 作物学报, 2014, 40(09): 1702-1709. |
[14] | 王丽鸳,韦康,张成才,成浩. 茶树花转录组微卫星分布特征[J]. 作物学报, 2014, 40(01): 80-85. |
[15] | 蒋会兵,宋维希,矣兵,李友勇,马玲,陈林波,田易萍,段志芬,刘本英,梁名志. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008. |
|