欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1909-1915.doi: 10.3724/SP.J.1006.2009.01909

• 耕作栽培·生理生化 • 上一篇    下一篇

茶树体内铝形态及铝累积特性

孙婷1,刘鹏1,*,郑人卫1,2,谢忠雷3,罗虹1   

  1. 1浙江师范大学植物学实验室,浙江金华321004;2浙江师范大学化学系,浙江金华321004;3吉林大学环境与资源学院,吉林长春130026
  • 收稿日期:2009-02-18 修回日期:2009-07-23 出版日期:2009-10-12 网络出版日期:2009-09-10
  • 通讯作者: 刘鹏, E-mail: sky79@zjnu.cn; Tel: 13566780990
  • 基金资助:

    本研究由国家自然科学基金资助项目(30540056,40573052)和浙江省自然科学基金资助项目(303461,504135)资助

Forms and Accumulation of Aluminum in Tea Plant(Camellia sinensis)

SUN Ting1,LIU Peng1,*,ZHENG Ren-Wei1,2,XIE Zhong-Lei3,LUO Hong1   

  1. 1Key Laboratory of Botany,Zhejiang Normal University,Jinhua 321004,China;2Department of Chemistry,Zhejiang Normal University,Jinhua321004,China;3College of Entironment and Resource,Jilin University,Changchun 130026,China
  • Received:2009-02-18 Revised:2009-07-23 Published:2009-10-12 Published online:2009-09-10
  • Contact: LIU Peng, E-mail: sky79@zjnu.cn; Tel: 13566780990

摘要:

设置不同Al3+浓度对青茶进行50 d处理,调查茶树铝含量和铝的化学配位形态。结果表明,茶树体内的铝大多以有机态或螯合态形式存在;茶树老叶具有高积累铝的特性,但以5 mmol L-1铝处理时,运输到叶片的铝减少,积累于茶树根部的铝增多。利用27Al NMR技术检测表明,茶树各器官中普遍存在Al13的强烈共振吸收峰;在各器官中还出现–0.38×10-6处和–0.17×10-6处的微弱吸收峰,为目前尚未检出的铝络合物形式;在5 mmol L-1 Al3+处理下,青茶老叶中含有更多的Al-复合物,包括Al-草酸盐(12)Al-草酸盐(12)Al-磷酸复合物,说明茶树体中的铝通过与其他物质形成络合物以降低铝的毒性。

关键词: 27A1NMR, 茶树, 铝形态, 铝累积

Abstract:

Aluminum toxicity is a major limiting factor affecting yield and quality of crops in acid soil. Camellia sinensis is an Al-accumulating plant grown healthily even in strong acid soil with high aluminum content. The study of the forms and accumulation of aluminum will be helpful to reveal the Al-toleranting mechanism of tea plant. In this paper, the content of Al3+ in tea plants was determined after Camellia sinensis wastreated for 50 d with different concentrations of Al3+ in culture solution. Besides, the forms of Al were analyzed in the roots, stems and leaves of tea plants by the nondestructive 27Al NMR with high accuracy. The old leaves of tea plant were the major Al-accumulating organ, whereas, roots would take the position of it and accumulate more aluminum when the plant was treated with 2 mmol L-1 Al3+. 27Al NMR test showed that the dissoluble aluminum in tea root, stem and leaf existed mainly in the form of [AlO4Al12(OH)24(H2O)12]7+(Al13), whose chemical shift was 63×10-6, and it was the first discovery in tea plant. Besides of Al13, there were two weak absorption peaks of 0.38×10-6 and 0.17×10-6 in three organs tested, which wereundetected aluminum complexes. Other three complexes appeared in old leaf when treated by 5 mmol L-1 Al3+, which were Al-oxalate (1:1), Al-oxalate (1:2), and Al-phosphate, and the chemical shifts were respectively 6.4×10-6, 12.7×10-6 and –6.2×10-6. In summary, most of Al3+in tea plant exist in chelate complexes or organic matter, which can be considered as one of Al-accumulating and Al-tolerance mechanism of tea plant.

Key words: 27aluminum NMR, Camellia sinensis, Aluminum accumulation


[1] Taylor G J. Current views of the aluminum stress response: The physiological basis of tolerance. Curr Top Plant Biochem Physiol, 1991, 10: 57-93

[2] Chenery E M. A preliminary stydy of aluminum and the tea bush. Plant Soil, 1955, 6: 174-200

[3] Matsumoto H, Hirasawa E, Morimura S, Takahashi E. Localization of aluminum in tea leaves. Plant Cell Physiol, 1976, 17: 627-631

[4] Ma J F, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal detoxification mechanism of Al in Hydrangea: Identification of Al for in the leaves. Plant Physiol, 1997, 113, 1033-1039

[5] Ma J F, Zheng S J, Hiradate S, Matsumoto H. Detoxificaion aluminum with buckwheat. Nature, 1997, 390: 569-570

[6] Watanabe T, Osaki M, Yoshihara T, Tadano T. Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. Plant Soil, 1998, 201: 165-173

[7] Ma J F, Hiradate S. Form of aluminum for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta, 2000, 211, 355-360

[8] Watanabe T, Osaki M. Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil, 2001, 237: 63-70

[9] Nagata T, Hayatsu M, Kosuge N. Identification of aluminum forms in tea leaves by 27Al NMR. Phytochemistry, 1992, 31: 1215-1218

[10] Liu L-N(刘丽娜), Yan B-Z(严宝珍), Hu G-F(胡高飞), Wang M(王梅). Determination of aluminum by 27Al nuclear magnetic resonance spectroscopy. Environ Chem (环境化学), 2005, 24(1): 108-109 (in Chinese)

[11] Nagata T, Mukai T, Goto T. Analysis of chemical forms of aluminum in tea infusions by using 27Al-NMR. Jpn Soc Food Sci Technol, 1994, 56: 1474-1475

[12] Liu Y-H(刘拥海), Peng X-X(彭新湘), Yu L(俞乐). Difference in oxalate content between buckwheat and soybean leaves and its possible cause. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2004, 30(2): 201-208 (in Chinese with English abstract)

[13] Qiu G-K(邱光葵), Pang S-W(庞叔薇). Spectrophotometric determination of activated aluminum in soil using eriochrome cyanine R. J Instrum Anal (分析测试学报), 1989, 8(4): 68-71 (in Chinese with English abstract)

[14] Xie Z-M(谢正苗), Huang M-H(黄铭洪), Ye Z-H(叶志鸿). Mechanisms for aluminum uptake and accumulation by aluminum excluders and hyperaccumulators. Acts Ecol Sin (生态学报). 2002, 22(10): 1653-1659 (in Chinese with English abstract)

[15] Xie Z-L(谢忠雷), Dong D-M(董德明), Du Y-G(杜尧国), Liu C-M(刘春明), Wang S-T(王胜天), Li Y-F(李迎芳), Li Y(李岩). Relationship between Al content in tea leaves and soil pH value. Acta Sci Nat Univ Jilinensis (吉林大学学报), 1998, 2(4): 89-92 (in Chinese with English abstract)

[16] Qin H-L(秦海林), Zhao T-Z(赵天增). Studies on identification of traditional chinese herbal medicines by 1H NMR.Acta Pharm Sin (药学学报),1999, 34(1): 58-62 (in Chinese with English abstract)

[17] Sarah L H, Peter A J, Ian D J. Comparative X-ray and 27Al NMR spectroscopic studies of the speciation of aluminum in aqueous systems: Al(III) complexes of N(CH2CO2H)2 (CH2CH2OH). J Inorgranic Biochem, 1995, 59: 785-794

[18] Shen R F, Takashi L S, Ma J F. Form of Al changes with Al concentration in leaves of buckwheat. J Exp Bot,2004, 55: 131-136

[19] Parker D R, Bertsch P M. Formation of Al13 tridecameric polycation under diverse synthesis conditions. Environ Sci Technol, 1992, 26, 914-921

[20] Wang X-L(王先龙), Zou G-W(邹公伟), Bi S-P(毕树平). Advances in determination of aluminum in environmental and biological materials by 27Al nuclear magnetic resonance spectroscopy. Chin J Inorganic Chem(无机化学学报), 2000, 4(16): 548-560 (in Chinese with English abstract)

[21] Wu Q-Y(吴琼鸯), Zheng W-W(郑伟伟), Luo L(罗亮), Liu P(刘鹏), Xu G-D(徐根娣). Effect of aluminium on the physiological characteristics of tea root system. Hubei Agric Sci (湖北农业科学), 2005, (3): 80-82 (in Chinese with English abstract)

[22] Luo L(罗亮), Xie Z-L(谢忠雷) Liu P(刘鹏), Xu G-D(徐根娣), Luo H(罗虹). Physiological response of plant to aluminum toxicity. J Agro-Environ Sci (农业环境科学学报), 2006, 25(2): 305-308 (in Chinese with English abstract)

[23] Wu B-H(伍炳华), Song Y-W(宋允文), Han W-Y(韩文炎). Effect of aluminum on root growth and nitrogenous nutrition. China Tea (中国茶叶), 1995, (2): 197-200 (in Chinese)


[24] Chenery E M. A Preliminary study of aluminum and the tea bush. Plant Soil, 1955, 6, 174
-200

[25] Matsumoto H, Hirasawa E, Morimura S, Takahashi E. Location and absorption of aluminum in pea roots and its binding to nucleic acids. Plant Cell Physiol, 1976, 17: 627-631

[26] Liao W-Y(廖万有). Effect and research expectation of aluminum on tea. Tea Fujian (福建茶叶), 1995, (4): 13-17 (in Chinese)

[27] Sun Y(孙云), Zheng J-K(郑金凯). Aluminum content analyse of Wulong tea. Tea Fujian (福建茶叶), 1994, (1): 15-19 (in Chinese)

[28] Le V H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and change in cell-wall components of squash seedings. Plant Physiol, 1994, 106: 971-976

[29] Ruan J-Y(阮建云), Wang G-Q(王国庆), Shi Y-Z(石元值), Ma L-F(马立锋). Aluminium in tea soil, rhizosphere soil and the characteristics of Al uptake by tea plant. J Tea Sci (茶叶科学), 2003, 23: 16-20 (in Chinese with English abstract)

[30] Luo H(罗虹), Liu P(刘鹏), Xie Z-L(谢忠雷), Xu G-D(徐根娣), Jin L-H(金蕾红). Effect of aluminum on microstructure of tea plant’s leaves. J Zhejiang Norm Univ (浙江师范大学学报), 2006, 29(4): 439-442 (in Chinese with English abstract)

[31] Yang X-D(杨小弟), Zhang F-P(章福平), Wang X-L(王先龙), Gan N(干宁), Zou G-W(邹公伟), Bi S-P(毕树平). Novel analytical techniques for fractionation and speciation of aluminum Ⅲ in environmental and biological systems. Chin J Anal Chem (分析化学), 2003, 31(9): 111-113 (in Chinese with English abstract)

[32] Nagata T, Hayatsu M, Kosuge N. Identification of aluminum forms in tea leaves by 27Al NMR. Phytochemistry, 1992, 31: 1215-1218

[33] Nagata T, Hayatsu M, Kosuge N. Aluminium kinetics in the tea plant using 27Al and 19F NMR. Phytochemistry, 1993, 32: 771-775

[34] Mhatre S N, Iyer R K, Moorthy P N. Characterization of aluminium complexes in tea extract: 27Al NMR Studies. Magnet Resonance Chem, 1993, 2: 169-175

[35] Morita A, Horie H, Fujii Y, Takatsu S, Watanabe N, Yagi A, Yokota H. Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry, 2004, 65: 2775-2780

[36] Ma J F, Ryan P R, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci, 2001, 6: 273-278

[37] Morita A, Suzuki R, Yokota H, Effect of ammonium application on the oxalate content of tea plant (Camellia sinensis L.). Soil Sci Plant Nutr, 2004, 50:763-769

[38] Kerven G L, Larsen P L, Bell L C, Edwards D G. Quantitative 27Al NMR spectroscopic studies of Al (III) complexes with organic acid ligands and their comparison with GEOCHEM predicted values. Plant Soil, 1995, 171: 35-39

[39] Ruan J, Ma L, Shi W, Han W. Uptake of fluoride by tea plant (Camellia sinensis L.) and the impact of aluminium. J Sci Food Agric, 2003, 83: 1342-1348
[1] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[2] 彭章, 童华荣, 梁国鲁, 石艺琦, 袁连玉. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报, 2018, 44(03): 463-470.
[3] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[4] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[5] 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717.
[6] 唐湖,郝心愿,王璐,肖斌,王新超,杨亚军. 茶树越冬芽在休眠与萌发时期的物质交流变化及其分子调控[J]. 作物学报, 2017, 43(05): 669-677.
[7] 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217.
[8] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[9] 钱文俊,岳川,曹红利,郝心愿,王璐,王玉春,黄玉婷,王博,王新超,肖斌,杨亚军. 茶树中性/碱性转化酶基因CsINV10的克隆与表达分析[J]. 作物学报, 2016, 42(03): 376-388.
[10] 王博,曹红利,黄玉婷,胡玉荣,钱文俊,郝心愿,王璐,杨亚军,王新超. 茶树生长素外运载体基因CsPIN3的克隆与表达分析[J]. 作物学报, 2016, 42(01): 58-69.
[11] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[12] 马春雷,姚明哲,王新超,金基强,马建强1陈亮. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达[J]. 作物学报, 2015, 41(02): 240-250.
[13] 曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*. 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位[J]. 作物学报, 2014, 40(09): 1702-1709.
[14] 王丽鸳,韦康,张成才,成浩. 茶树花转录组微卫星分布特征[J]. 作物学报, 2014, 40(01): 80-85.
[15] 蒋会兵,宋维希,矣兵,李友勇,马玲,陈林波,田易萍,段志芬,刘本英,梁名志. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!