欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1916-1922.doi: 10.3724/SP.J.1006.2009.01916

• 耕作栽培·生理生化 • 上一篇    下一篇

灌浆期干旱胁迫对玉米叶片关系统活性的影响

李耕1,高辉远2,3,赵斌1,董树亭1,3,张吉旺1,3,杨吉顺1,王敬锋1,刘鹏1,3,*   

  1. 1生的农业大学农学院;2山东农业大学生命科学学院;3作物生物学国家重点实验室,山东泰安271018
  • 收稿日期:2009-03-19 修回日期:2009-06-25 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 刘鹏,E-mail:liup@sdau.edu.cn; Tel:0538-8245838
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD02A13-2-2,2007BAD91B04),国家自然科学基金项目(30771282,30871476),山东省良种工程项目资助。

Effects of Drought Stress on Activity of Photosystems in Leaves of Maize at Grain Filling Stage

LI Geng1,GAO Hui-Yuan2,3,ZHAO Bin1,DONG Shu-Ting1,3,ZHANG Ji-Wang1,3,YANG Ji-Shun1,WANG Jing-Feng1,LIU Peng13*   

  1. 1 College of Agronomy, Shandong Agricultural University; 2 College of Life Science, Shandong Agricultural University; 3 State Key Laboratory of Crop Biology, Tai’an 271018, China
  • Received:2009-03-19 Revised:2009-06-25 Published:2009-10-12 Published online:2009-08-07
  • Contact: LIU Peng,E-mail:liup@sdau.edu.cn; Tel:0538-8245838

摘要:

以高淀粉玉米品种郑单21为材料,借助叶绿素荧光快速诱导动力学曲线和820 nm光吸收曲线,研究了灌浆期土壤干旱胁迫对玉米籽粒产量和对叶片光系统I (PSI)及光系统II (PS II)活性的影响。两年的研究结果均表明,干旱胁迫显著抑制叶片光合速率(P<0.05)和籽粒产量(P<0.05)JIP-test分析发现干旱胁迫导致叶绿素荧光快速诱导动力学曲线中的K点和J点上升,表明PS II放氧复合体(OEC)QA之后的电子传递链受到抑制,且PS II受体侧受抑制的程度大于供体侧。此外,干旱胁迫也显著地抑制PS I的最大氧化还原活性(ΔI/Io),阻碍光合电子从PS IIPS I的传递,破坏了PS IPS II的协调性。我们认为干旱胁迫抑制PS IPS II活性并破坏二者的协调性,是导致导致Pn和籽粒产量下降的重要原因之一。

关键词: 玉米, 干旱胁迫, 叶绿素荧光快速诱导动力学曲线, PSI最大氧化还原活性, 820nm光吸收

Abstract:

At grain filling stage, the effects of drought stress on photosynthetic acivities of photosystem I (PS I) and photosystem II (PS II) in leaves of maize (Zhengdan 21, a cultivar with high starch content) were studied by simultaneously analyzing chlorophyll a fluorescence transient and light absorbance at 820 nm. The results, obtained from two years experiments, demonstrated that the drought stress significantly reduced photosynthesis (P<0.05) and grain yield (P<0.05) of the maize. The K and J steps at fluorescence transient were increased by drought stress, which indicated the inhibition of oxygen- evolving complex (OEC) and electron transport chain after QA in PS II. The acceptor side of PSII was damaged more severely than the donor side of PSII. Furthermore, the maximal oxidation-reduction activity of PS I (ΔI/Io) was also significantly decreased by the drought stress, which inhibited the photosynthetic electron tranport from the PS II to PS I, destructing the coordination between PS I and PS II. We suggest that the inhibition of PS I and PS II and the destruction of the coordination between PS I and PS II by the drought stress is one of the main reasons to cause the decrease in photosyntheis and grain yield of maize.

Key words: Maize, Drought stress, Chlorophyll a fluorescence transient, Maximal oxidation-reduction activity of PS I, 820 nm light absorbance

[1] Chaves M M and, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2004, 55: 2365-2384

[2] Chaves M M. Effects of water deficits on carbon assimilation. J Exp Bot, 1991, 42: 1-16

[3] Quick W P, Chaves M M, Wendler R, David M, Rogrigues M L, Passaharinho J A, Pereira J S, Adcock M D, Leegood R C, Stitt M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ,1992, 15: 25-35

[4] Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol, 1994, 45: 633-662

[5] Xu D-Q (许大全). Several problems in the research of plant light stress. Plant Physiol Commun (植物生理学通讯), 2003, 39(5): 493-495 (in Chinese)

[6] Hu M-J (胡美君), Guo Y-P (郭延平), Shen Y-G (沈允钢), Zhang L-C (张良诚). Environmental regulation of Citrus photosynthesis. Chin J Appl Ecol (应用生态学报), 2006, 17(3): 535-540 (in Chinese with English abstract)

[7] Dai J, Gao H, Dai Y, Zou Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol,2004, 6: 171-177

[8] Jiang C D, Gao H Y, Zou Q, Jiang G M, Li L H. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Environ Exp Bot, 2006, 55: 87-96

[9] Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitakaya L, Foyer C H. Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot, 2002, 89: 841-850

[10] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol,1999, 50: 601-639

[11] Chen H X, Li W J, An S Z, Gao H Y. Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetica, 2004, 42: 117-122

[12] Müller M, Li X P, Niyogi K K. Non-photochemical quenching: a response to excess light energy. Plant Physiol, 2001, 125: 1558-1566

[13] Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ, 2005, 28: 1056-1071

[14] Wang X-W(王孝威), Duan Y-H(段艳红), Cao H(曹慧), Zheng W-Y(郑王义). The photosynthetic non-stomatal limitation spur-apple young trees under water stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(9): 1609-1613 (in Chinese with English abstract)

[15] Cao H(曹慧), Xu X-F(许雪峰), Han Z-H(韩振海), Wang X-W(王孝威), Guo T-Q(郭图强). Changes of physiological characteristic on photosynthesis in Malus seedling leaves during water stress. Acta Hortic Sin (园艺学报),2004, 31(3): 285-290 (in Chinese)

[16] Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271

[17] Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystemIin the Chl a fluorescence rise OJIP. Biochim Biophys Acta, 2005, 1706: 250-261

[18] Ilík P, Schansker G, Kotabov E, Váczi P, Strasser R J, Bart k M. A dip in the chlorophyll fluorescence induction at 0.2-2 s inTrebouxia-possessing lichens reflects a fast reoxidation of photosystemI. A comparison with higher plants. Biochim Biophys Acta, 2006, 1757: 12-20

[19] Schansker G, Srivastava A, Govindjee, Strasser RJ. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biol, 2003, 30: 785-796

[20] Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000, Chapter 25, pp 445-483

[21] Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee eds. Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004, Chapter 12, pp 1-47

[22] Wu C-A(吴长艾), Meng Q-W(孟庆伟), Zou Q(邹琦), Zhao S-J(赵世杰), Wang W(王玮). Comparative study on the photooxidative response in different wheat cultivar leaves. Acta Agron Sin (作物学报), 2003, 29(3): 339-344 (in Chinese with English abstract)

[23] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol,1991, 42: 319-349

[24] Maxwell K, Johnson G N. Chlorophyll fluorescence a practical guide. J Exp Bot, 2000, 51: 659-668

[25] Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32-42

[26] Guissé B, Srivastava A, Strasser R J. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Genève,1995, 48: 147-160

[27] Eggenberg P, Rensburg L V, Krüger H J, Strasser R J. Screening criteria for drought tolerance in Nicotiana tabacum L. derived from the poly phasic rise of the chlorophyll a fluorescence transient (O-J-I-P). In: Mathis P eds. Photosynthesis: from Light to Biosphere. Dordrecht: KAP Press, 1995, Vol. 4: 661-664

[28] Lu C M, Zhang J H. Heat-induced multiple effects on PSII in wheat plants. J Plant Physiol, 1999, 156: 259-265

[29] Pfannschmidt T, Nilsson A, Allen J F. Photosynthetic control of chloroplast gene expression. Nature, 1999, 397: 625-628

[30] Sun S(孙山), Wang S-M(王少敏), Wang J-X(王家喜), Gao H-Y(高辉远). Effects of dehydration in the dark on functions of PSI and PSII in Apricot (Prunus armeniaca L. ‘JinTaiyang’) leaves. Acta Hortic Sin (园艺学报), 2008, 35(1): 1-6 (in Chinese)
[31] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basis. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!