作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1916-1922.doi: 10.3724/SP.J.1006.2009.01916
李耕1,高辉远2,3,赵斌1,董树亭1,3,张吉旺1,3,杨吉顺1,王敬锋1,刘鹏1,3,*
LI Geng1,GAO Hui-Yuan2,3,ZHAO Bin1,DONG Shu-Ting1,3,ZHANG Ji-Wang1,3,YANG Ji-Shun1,WANG Jing-Feng1,LIU Peng13*
摘要:
以高淀粉玉米品种郑单21为材料,借助叶绿素荧光快速诱导动力学曲线和820 nm光吸收曲线,研究了灌浆期土壤干旱胁迫对玉米籽粒产量和对叶片光系统I (PSI)及光系统II (PS II)活性的影响。两年的研究结果均表明,干旱胁迫显著抑制叶片光合速率(P<0.05)和籽粒产量(P<0.05)。JIP-test分析发现干旱胁迫导致叶绿素荧光快速诱导动力学曲线中的K点和J点上升,表明PS II放氧复合体(OEC)和QA之后的电子传递链受到抑制,且PS II受体侧受抑制的程度大于供体侧。此外,干旱胁迫也显著地抑制PS I的最大氧化还原活性(ΔI/Io),阻碍光合电子从PS II向PS I的传递,破坏了PS I和PS II的协调性。我们认为干旱胁迫抑制PS I和PS II活性并破坏二者的协调性,是导致导致Pn和籽粒产量下降的重要原因之一。
[1] Chaves M M and, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2004, 55: 2365-2384 [2] Chaves M M. Effects of water deficits on carbon assimilation. J Exp Bot, 1991, 42: 1-16 [3] Quick W P, Chaves M M, Wendler R, David M, Rogrigues M L, Passaharinho J A, Pereira J S, Adcock M D, Leegood R C, Stitt M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ,1992, 15: 25-35 [4] Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol, 1994, 45: 633-662 [5] Xu D-Q (许大全). Several problems in the research of plant light stress. Plant Physiol Commun (植物生理学通讯), 2003, 39(5): 493-495 (in Chinese) [6] Hu M-J (胡美君), Guo Y-P (郭延平), Shen Y-G (沈允钢), Zhang L-C (张良诚). Environmental regulation of Citrus photosynthesis. Chin J Appl Ecol (应用生态学报), 2006, 17(3): 535-540 (in Chinese with English abstract) [7] Dai J, Gao H, Dai Y, Zou Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol,2004, 6: 171-177 [8] Jiang C D, Gao H Y, Zou Q, Jiang G M, Li L H. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Environ Exp Bot, 2006, 55: 87-96 [9] Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitakaya L, Foyer C H. Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot, 2002, 89: 841-850 [10] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol,1999, 50: 601-639 [11] Chen H X, Li W J, An S Z, Gao H Y. Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetica, 2004, 42: 117-122 [12] Müller M, Li X P, Niyogi K K. Non-photochemical quenching: a response to excess light energy. Plant Physiol, 2001, 125: 1558-1566 [13] Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ, 2005, 28: 1056-1071 [14] Wang X-W(王孝威), Duan Y-H(段艳红), Cao H(曹慧), Zheng W-Y(郑王义). The photosynthetic non-stomatal limitation spur-apple young trees under water stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(9): 1609-1613 (in Chinese with English abstract) [15] Cao H(曹慧), Xu X-F(许雪峰), Han Z-H(韩振海), Wang X-W(王孝威), Guo T-Q(郭图强). Changes of physiological characteristic on photosynthesis in Malus seedling leaves during water stress. Acta Hortic Sin (园艺学报),2004, 31(3): 285-290 (in Chinese) [16] Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271 [17] Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystemIin the Chl a fluorescence rise OJIP. Biochim Biophys Acta, 2005, 1706: 250-261 [18] Ilík P, Schansker G, Kotabov E, Váczi P, Strasser R J, Bart k M. A dip in the chlorophyll fluorescence induction at 0.2-2 s inTrebouxia-possessing lichens reflects a fast reoxidation of photosystemI. A comparison with higher plants. Biochim Biophys Acta, 2006, 1757: 12-20 [19] Schansker G, Srivastava A, Govindjee, Strasser RJ. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biol, 2003, 30: 785-796 [20] Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000, Chapter 25, pp 445-483 [21] Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee eds. Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004, Chapter 12, pp 1-47 [22] Wu C-A(吴长艾), Meng Q-W(孟庆伟), Zou Q(邹琦), Zhao S-J(赵世杰), Wang W(王玮). Comparative study on the photooxidative response in different wheat cultivar leaves. Acta Agron Sin (作物学报), 2003, 29(3): 339-344 (in Chinese with English abstract) [23] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol,1991, 42: 319-349 [24] Maxwell K, Johnson G N. Chlorophyll fluorescence a practical guide. J Exp Bot, 2000, 51: 659-668 [25] Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32-42 [26] Guissé B, Srivastava A, Strasser R J. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Genève,1995, 48: 147-160 [27] Eggenberg P, Rensburg L V, Krüger H J, Strasser R J. Screening criteria for drought tolerance in Nicotiana tabacum L. derived from the poly phasic rise of the chlorophyll a fluorescence transient (O-J-I-P). In: Mathis P eds. Photosynthesis: from Light to Biosphere. Dordrecht: KAP Press, 1995, Vol. 4: 661-664 [28] Lu C M, Zhang J H. Heat-induced multiple effects on PSII in wheat plants. J Plant Physiol, 1999, 156: 259-265 [29] Pfannschmidt T, Nilsson A, Allen J F. Photosynthetic control of chloroplast gene expression. Nature, 1999, 397: 625-628 [30] Sun S(孙山), Wang S-M(王少敏), Wang J-X(王家喜), Gao H-Y(高辉远). Effects of dehydration in the dark on functions of PSI and PSII in Apricot (Prunus armeniaca L. ‘JinTaiyang’) leaves. Acta Hortic Sin (园艺学报), 2008, 35(1): 1-6 (in Chinese) [31] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basis. Ann Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[14] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|