欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2205-2212.doi: 10.3724/SP.J.1006.2009.02205

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

裸燕麦品质资源AFLP标记遗传多样性分析

徐微1,张宗文1,2,*,吴斌1,崔林3   

  1. 1中国农业科学院作物科学研究所,北京100081;2国际生物多样性中心东亚办事处,北京100081;3山西省农业科学院农作物品种资源研究室,山西太原030031
  • 收稿日期:2009-01-06 修回日期:2009-07-20 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 张宗文,E-mail:zongwenz@163.com;Tel:010-82105686
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD02B05-11)和国家燕麦产业技术体系建设项目资助。

Genetic Diversity in Naked Oatmeal(Avena nuda) Germplasm Revealed by AFLP Markers

XU Wei1,ZHANG Zong-Wen1,2,*,WU Bin1,CUI Lin3   

  1. 1Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;2Bioversity Intermational Office for East Asian,Beijing 100081,China;3Institute of Crop Germplasm Resources,Shanxi Academy of Agricultural Sciences,Taiyuan 030031,China
  • Received:2009-01-06 Revised:2009-07-20 Published:2009-12-10 Published online:2009-10-13
  • Contact: ZHANG Zong-Wen,E-mail:zongwenz@163.com;Tel:010-82105686

摘要:

20AFLP引物组合对281份栽培裸燕麦(Avena nuda)进行遗传多样性分析,共得到1 137条带,其中260条为多态性带,引物的平均多态性百分率为22.96%,平均多样性信息指数(PIC)0.0326。以地理来源分组,不同来源的组群Simpson指数在1.235~1.495之间,Shannon指数范围为0.1558~0.4437,组群内变异贡献率为83.45%,组群间变异占16.55%。组群大小与多态性位点数、组群内变异贡献率、Simpson指数及Shannon指数显著相关。内蒙古和山西资源多样性丰富,东北地区资源独特,西部地区资源遗传结构单一,东欧组群与内蒙古组群遗传关系最近。国内组群的遗传多样性水平高于国外组群。地方品种与育成品种相比,组群内变异贡献率较高。建议在遗传多样性丰富地区进一步收集裸燕麦资源,并加强对材料少、代表性较差的地区,如西北和西南地区的裸燕麦地方品种的收集,以丰富我国的裸燕麦基因源。

关键词: 裸燕麦, AFLP, 遗传多样性, 种质资源

Abstract:

Oat (Avena L.) is one of the most important cereal crops in the world, ranked at the sixth top place in planting area and yield among all cereal crops, and possesses high values in food and nutrition, health protection and feeding livestock. Naked oat (A. nuda) is an endemic type in China. However, a few studies on naked oat germplasm at molecular level have been reported. The aim of this study was to evaluate the genetic diversity of core collection of naked oat using AFLP markers. A total of 281 accessions of naked oat were analyzed using 20 AFLP primer combinations. Selective amplification created 1 137 bands, of which 260 were polymorphic, accounting for 22.96% of the total bands. The mean polymorphism information content (PIC) was 0.0326. For different geographic groups, Simpson’s index ranged from 1.235 to 1.495, and Shannon’s index varied from 0.1558 to 0.4437. The majority (83.45%) of the AFLP variation resided within accessions of each group, and the rest (16.55%) existed among accessions between groups. The sample size of geographic groups was significantly associated with the number of polymorphic loci, proportion of within-group variation, Simpson’s index and Shannon’ s index. Accessions from Inner Mongolia and Shanxi were most diverse, and those from northeastern China were most distinct. Genetic resemblance was found within accessions from western China. Germplasm from East Europe was genetically close to that from Inner Mongolia, China. The genetic diversity of Chinese accessions was significantly higher than that of exotic accessions. Compared with breeding cultivars, landraces presented a higher proportion of within-group variation. Naked oat landraces were suggested to be collected in the regions where are not well represented by the current collections, and collecting activities should be continuous in the diversity-rich areas such as northwestern and southwestern China in order to enrich naked oat gene pool in China.

Key words: Avena nuda, AFLP, Genetic diversity, Genetic Resources

[1] ZhengD-S(郑殿升), WangX-M(王晓明), ZhangJ(张京). DescriptorsandDataStandardforOats(Avenaspp.) (燕麦种质资源描述规范和数据标准). Beijing: ChinaAgriculturePress, 2006 (inChinese)

[2] DongY-C(董玉琛), ZhengD-S(郑殿升). CropsandTheirWildRelativesinChina(中国作物及其野生近缘植物). Beijing: ChinaAgriculturePress, 2006 (inChinese)

[3] WangM-Y(王茅燕), QiX-L(齐秀丽), ZhangF-Y(张凤英). Progressintheresearchofoatmolecularbiologyabroad. JInnerMongoliaAgricUniv(内蒙古农业大学学报), 2001, 22(4): 139-144 (inChinesewithEnglishabstract)

[4] ZhengD-S(郑殿升), LüY-C(吕耀昌), TianC-Y(田长叶), ZhaoW(赵伟). Analysis on beta-glucan content of naked oat (Avena nuda L.) in China. J Plant Genet Resour (植物遗传资源学报), 2006, 7(1): 54-58 (in Chinese with English abstract)

[5] O’Donoughue L S, Souza E, Tanksley S D, Sorrells M E. Relationships among North American oat cultivars based on restriction fragment length polymorphisms. Crop Sci, 1994, 34: 1251-1258

[6] Alicchio R, Aranci L, Conte L. Restriction fragment length polymorphism based phylogenetic analysis of Avena L. Genome, 1995, 38: 1279-1284

[7] Nocelli E, Giovannini T, Bioni M, Alicchio R. RFLP- and RAPD-based genetic relationships of several diploid species of Avena with the A genome. Genome, 1999, 42: 950-959

[8] Edyta P G. Pedigree, RAPD and simplified AFLP-based assessment of genetic relationships among Avena sativa L. cultivars.Euphytica, 2004,138:13-22

[9] Fu Y B, Peterson G W, Williams D, Richards K W, Fetch J M. Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm. Theor Appl Genet, 2005, 530: 530-539

[10] Fu Y B, Williams D J. AFLP variation in 25 Avena species. Theor Appl Genet, 2008, 117: 333-342

[11] Li C D, Rossnagel B G, Scoles G J. Tracing the phylogeny of the hexaploid oat Avena sativa with satellite DNAs. Crop Sci, 2000, 40: 1755-1763

[12] Fu Y B, Chong J, Fetch T, Wang M L. Microsatellite variation in germplasm accessions of the wild oat Avena sterilis L. Theor Appl Genet, 2007, 114: 1029-1038

[13] Russell J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R. Direct comparison of levels of genetic variation amongbarley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet, 1997, 95: 714-722

[14] Shoaib A, Arabi M I E. Genetic diversity among Syrian cultivated and landraces wheat revealed by AFLP markers. Genet Resour Crop Evol, 2006, 53: 901-906

[15] Du J-Y(杜金友), Li Y(黎裕), Wang T-Y(王天宇), Shi Y-S(石云素), Song Y-C(宋燕春), Wang H-B(王海波). Studies of genetic diversity in maize inbred lines based on SSRs and AFLPs markers. Acta Agric Boreali-Sin (华北农学报), 2003, 18(1): 59-63 (in Chinese with English abstract)

[16] Yan L(闫龙), Guan J-P(关建平), Zong X-X(宗绪晓). Genetic diversity analysis of pigeon pea germplasm resources by AFLP. Acta Agron Sin (作物学报), 2007, 33(5): 790-798 (in Chinese with English abstract)

[17] Weir B S. Genetic Data Analysis: Methods for Discrete PopulationGenetic Data. Sunderland: Simauer Associates, 1990

[18] Peakall R, Smouse P E. GENALEX 6: Genetic analysis in Excel: Population genetic software for teaching and research. Mol Ecol Notes, 2006, 6: 288-295

[19] Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 1997, 129: 157

[20] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599

[21] Rohlf F J. NTSYSpc: Numerical Taxonomy System, ver. 2.20. Setauket: Exeter Publishing Ltd, 2008

[22] Xu J(徐宁), Cheng X-Z(程须珍), Wang L-X(王丽侠), Wang S-H(王素华), Liu C-Y(刘长友), Sun L(孙蕾), Mei L(梅丽). Screening and application of SSR molecular markers for genetic diversity analysis of Chinese adzuki bean germplasm resources. Acta Agron Sin (作物学报), 2009, 35(2): 219-227 (in Chinese with English abstract)
[23] Vavilov N I. Studies on the Origin of Cultivated Plants. Leningrad: State Press, 1926
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[3] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[4] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[5] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[6] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[7] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[8] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[9] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[10] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[11] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[12] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[13] 张晓军,肖进,王海燕,乔麟轶,李欣,郭慧娟,常利芳,张树伟,阎晓涛,畅志坚,武宗信. 小偃麦衍生品系的赤霉病抗性评价[J]. 作物学报, 2020, 46(01): 62-73.
[14] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[15] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!