欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2213-2217.doi: 10.3724/SP.J.1006.2009.02213

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻黑条矮缩病抗性QTL分析

潘存红1,2,李爱宏2,**,陈宗祥1,吴林波1,戴正元2,张洪熙2,黄年生2,陈夕军1,张亚芳1,左示敏1,潘学彪1,*   

  1. 1扬州大学江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室,江苏扬州225009;2江苏里下河地区农业科学研究所/国家水稻改良中心南京分中心,江苏扬州225007
  • 收稿日期:2009-03-11 修回日期:2009-06-25 出版日期:2009-12-10 网络出版日期:2009-09-10
  • 通讯作者: 潘学彪, E-mail: shuidao@yzu.edu.cn; Tel: 0514-87972136
  • 基金资助:

    本研究由江苏省自然科学基金项目(BK2008202)和江苏里下河地区农业科学研究所基金项目(200801)资助。

Detection of QTL for Resistance to Rice Black-Streaked Dwarf  Disease

PAN Cun-Hong1,2,LI Ai-Hong2,**,CHEN Zong-Xiang1,WU Lin-Bo1,DAI Zheng-Yuan2, HUANG Nian-Sheng2,CHEN Xi-Jun1,ZHANG Ya-Fang1,ZUO Shi-Min1,PAN Xue-Biao1*   

  1. 1Key Laboratory of Plant Functional Genomics of Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province,Yangzhou University,Yangzhou 225009,China;2Lixiahe Agricultural Research Institute of Jiangsu Province/Nanjing Subcenter of National Rice Improvement Center,Yangzhou 225007,China
  • Received:2009-03-11 Revised:2009-06-25 Published:2009-12-10 Published online:2009-09-10
  • Contact: PAN Xue-Biao, E-mail: shuidao@yzu.edu.cn; Tel: 0514-87972136

摘要:

利用珍汕97B/明恢63的重组自交系群体,采用自然发病鉴定的方法,以穴发病率为表型值,对各株系进行黑条矮缩病抗性鉴定。群体的穴发病率偏向于抗病亲本,且呈连续性分布,表明水稻黑条矮缩病抗性受数量性状基因控制。利用WinQTLcart 2.5软件对黑条矮缩病抗性QTL进行分析,共检测到6QTL,其中第611染色体上各有2个,第79染色体各有1个。第679染色体上的4QTL在两个地点都能检测到,是稳定表达的QTL,尤其是第6染色体上的2QTLLOD值分别为12.099.77,贡献率分别为20.20%18.68%,是主效QTL,能在分子标记辅助选择育种中加以利用。

关键词: 水稻黑条矮缩病, 重组自交系群体, QTL分析

Abstract:

The rice black-streaked dwarf viral disease (RBSDV), transmitted by the planthopper Laodelphax striatellus Fallèn, was one of the most serious diseases in rice in south China. Breeding of RBSDV resistance variety using marker-assisted selection was effective measure to reduce the disease damage. For achieving this aim, QTL mapping of resistance to RBSDV was studied using a recombinant inbred line (RIL) population from the cross between Zhenshan 97B and Minghui 63. Reactions of 242 RILs to RBSDV were investigated by natural infection method in Agricultural College of Yangzhou University and Lixiahe Agricultural Research Institute, and scored by the incidence of RBSDV. The trait of RBSDV incidence was normally distributed and marked bias towards the resistant parent, which implied that they were controlled by quantitative trait loci. Six QTLs for resistance to RBSDV were detected by WinQTLcart 2.5 software. Two adjacent QTLs were mapped on chromosome 6, two on chromosome 11, one on chromosomes 7 and 9, respectively. Four QTLs on chromosomes 6, 7, and 9 could be detected in two locations, and were stably expressed across the two environments. There had not been any reports about location of QTL for resistance of rice stripe virus and planthopper, which suggested that six QTLs in this study were really resistant to RBSDV. Two QTLs on chromosome 6 were with main effect, and their contributions to the total variation were 20.20% and 18.68% with LOD scores of 12.09 and 9.77 respectively, moreover, they had high value for study on genetics of RBSDV and should be useful in marker-assisted selection for resistance to RBSDV.

Key words: Rice black-streaked dwarf viral disease, Recombinant inbred line population, QTL Analysis

[1] Milne R G, Lovisolo O. Maize rough dwarf and related viruses. Adv Virus Res, 1977, 21: 267-341

[2] Azuhata F, Uyeda I, Kimura I, Shikata E. Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J General Virology, 1993, 74: 1227-1232

[3] Ding X-T(丁新天), Xu J-H(徐加湖), Li D-X(黎东兴), Ding L-L(丁丽玲), Chen Y-T(陈宇腾), Zhang J-Y(章锦杨), Qiu C-H(邱财富). The prevalent reason of rice black-streaked dwarf viral disease and controlling approach in the south mountain of Zhejiang. Chin Agric Sci Bull (中国农学通报), 2003, 19(4): 113-116 (in Chinese)

[4] Chen S-X(陈声祥), Wu H-L(吴惠玲), Liao X-G(廖璇刚), Lü Y-P(吕永平), Shen S-F(沈升法), Wang O-F(王藕芳), Jin M-S(金梅松). The prevalent reason of rice black-streaked dwarf viral disease in the middle of Zhejiang. Zhejiang Agric Sci (浙江农业科学), 2000, (6): 287-289 (in Chinese)

[5] Qiu G-C(仇广灿), Cheng X-S(成晓松), Hu J(胡键), Wu C-Q(吴彩全), Cao X-L(曹晓利). Epidemics characteristic of rice black-streaked dwarf viral disease and its controlling method. Barley & Cereal Sci (大麦与谷类科学), 2008, 3(2): 51-53 (in Chinese)

[6] Wang H-D(王华弟), Zhu Z-R(祝增荣), Chen J-P(陈剑平), Wang E-G(汪恩国), Li B-F(李宝福). Epidemics, monitoring and key control techniques of the rice black-streaked dwarf viral disease. Acta Agric Zhejiangensis (浙江农业学报), 2007, 19(3): 141-146 (in Chinese with English abstract)

[7] Li A-H(李爱宏), Dai Z-Y(戴正元), Ji H-J(季红娟), Zhang X-X(张小祥), Li Y-H(李育红), Pan C-H(潘存红), Zhang H-X(张洪熙), Pan X-B(潘学彪). Preliminary analysis on resistance of rice black-streaked dwarf viral disease for germplasms with different gene-types. J Yangzhou Univ (Agric & Life Sci Edn)(扬州大学学报·农业与生命科学版), 2008, 29(3): 18-22(in Chinese with English abstract)

[8] Xing Y-Z(邢永忠), Tan Y-F(谈移芳), Xu G-C(徐才国), Hua J-P(华金平), Sun X-L(孙新立). Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin (植物学报), 2001, 43(8): 840-845 (in Chinese with English abstract)

[9] Lü Y-P(吕永平), Lei J-L(雷娟利), Jin D-D(金登迪), Chen S-X(陈声祥). Detect RBSDV with RT-PCR. Acta Agric Zhejiangensis (浙江农业学报), 2002, 14(2): 117-119 (in Chinese)

[10] Wang S C, Zeng Z B. Windows QTL Cartographer 2.0 Department of Statistics. North Carolina State University, Raleigh, NC, 2001-2004. http://statgen.ncsu.edu/qtlcart/WQTLCart.html

[11] Sun D Z, Jiang L, Liu S J, Zhang Y X, Huang P H, Cheng X N, Zhai H Q, Wan J M. Detection of QTLs for resistance to rice stripe virus and small brown planthopper in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(6): 805-810

[12] Yamasaki M, Tsuenmatu H, Yoshimura A, Iwata N, Yasui H. Quantitative trait locus mapping of ovicidal response in rice (Oryza sativa L.) against whitebacked planthopper (Sogatella furcifera Horvath). Crop Sci, 1999, 39: 1178-1183

[13] Wang C M, Yasui H, Yoshimura A, Zhai H Q, Wan J M. Inheritance and QTL mapping of antibiosis to green leafhopper in rice. Crop Sci, 2004, 44: 389-393

[14] Yasui H, Yoshimura A. QTL mapping of antibiosis to green leafhopper, Nephotettix virescens distant and green rice leafhopper, Nephotettix cincticeps Uhler in rice, Oryza sativa L. Rice Genet Newsl, 1999, 16: 96-98

[15] Rahman M L, Chu S H, Qiao Y L, Jiang W Z, Khanam M S, Jena K K, Koh H J. Genetic analysis and high-resolution mapping of two rice brown planthopper resistant genes, BPH20(t) and BPH21(t) from Oryza Minuta. In: Plant & Animal Genomes XVI Conference, San Diego, CA: Scherago International, Inc., 2008. 237

[16] Kawaguchi M, Murata K, Ishii T, Takumi S, Mori N, Nakamura C. Assignment of a brown planthopper (Nilaparvata lugens Stal) resistance gene bph4 to the rice chromosome 6. Breed Sci, 2001, 51: 13-18

[17] McCouch S R, Khush G S, Tanksley S D. Tagging genes for disease and insect resistance via linkage to RFLP markers. In: Rice Genetics II. Proc 2nd Int Rice Genet Symp. Manila: IRRI, 1991. pp 443-449

[18] Su C-C(苏昌潮). Analysis of Germplasm Resistant to Brown Planthopper (Nilaparvata lugens Stal) and Molecular Mapping of BPH Resistant Gene in Rice (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, 2003. pp 48-53 (in Chinese with English abstract)

[19] Hayano-Saito Y, Saito K, Nakamura S, Kawasaki S, Iwasaki M. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor Appl Genet, 2000, 101: 69-63

[20] Ding X-L(丁秀兰), Jiang L(江玲), Liu S-J(刘世家), Wang C-M(王春明), Chen L-M(陈亮明), Cheng Z-B(程兆榜), Fan Y-J(范永坚), Zhou Y-J(周益军), Wan J-M(万建民). Using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV 85. Acta Genet Sin (遗传学报), 2004, 31(3): 287-292 (in Chinese with English abstract)

[21] Maeda H, Nemoto H, Yagi T. QTL analysis for stripe disease resistance using recombinant inbred lines derived from crossing between Milyang and Akihikare. In: Prospects of Rice Genetics and Breeding for the 21st Century-Paper Collection of International Rice Genetics and Breeding Symposium. Beijing: China Agricultural Science and Technology Press, 1999. pp 53-57
Sun D-Z(孙黛珍), Jiang L(江玲), Zhang Y-X(张迎信), Cheng X-N(程遐年), Zhai H-Q(翟虎渠), Wan J-M(万建民). Analysis of quantitative trait loci for resistance to stripe disease in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(1): 95-98 (in Chinese with English abstract)
[1] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[2] 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671.
[3] 宁海龙,白雪莲,李文滨,薛红,庄煦,李文霞,刘春燕. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位[J]. 作物学报, 2016, 42(11): 1620-1628.
[4] 张玲,李晓楠,王伟,杨生龙,李清,王嘉宇. 水稻株型相关性状的QTL分析[J]. 作物学报, 2014, 40(12): 2128-2135.
[5] 张文英,智慧,柳斌辉,王雪征,庞昭进,李积铭,王广才,李明哲,王永芳,李伟,李海权,贾冠清,刁现民. 豫谷1号和青狗尾草RIL群体根系变异和垂直分布[J]. 作物学报, 2014, 40(10): 1717-1724.
[6] 范冬梅,马占洲,刘春燕,杨振,曾庆力,辛大伟,蒋洪蔚,邱鹏程,陈庆山,胡国华. 多种环境下大豆单株粒重QTL的定位与互作分析[J]. 作物学报, 2013, 39(06): 1021-1029.
[7] 张伟强,库丽霞,张君,韩赞平,陈彦惠. 玉米出籽率、籽粒深度和百粒重的QTL分析[J]. 作物学报, 2013, 39(03): 455-463.
[8] 李爱宏,潘存红,戴正元,肖宁,余玲,李育红,张小祥,张洪熙,潘学彪. 以标记辅助选择改良江苏主栽粳稻品种“淮稻5号”黑条矮缩病抗性[J]. 作物学报, 2012, 38(10): 1775-1781.
[9] 覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林. 玉米籽粒中花色苷和黑色素含量的QTL分析[J]. 作物学报, 2012, 38(02): 275-284.
[10] 冯跃, 翟荣荣, 曹立勇, 林泽川, 魏兴华, 程式华. 不同施氮水平下水稻株高与抽穗期的QTL比较分析[J]. 作物学报, 2011, 37(09): 1525-1532.
[11] 李灿东, 蒋洪蔚, 刘春燕, 郭泰, 王志新, 吴秀红, 郑伟, 邱鹏程, 张闻博, 宋英博, 栾奕娜, 陈庆山, 胡国华. 大豆耐旱选择群体QTL定位[J]. 作物学报, 2011, 37(04): 603-611.
[12] 谭巍巍, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕. 在干旱和正常水分条件下玉米穗部性状QTL分析[J]. 作物学报, 2011, 37(02): 235-248.
[13] 彭勃, 王阳, 李永祥, 刘成, 张岩, 刘志斋, 谭巍巍, 王迪, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 玉米籽粒产量与产量构成因子的关系及条件QTL分析[J]. 作物学报, 2010, 36(10): 1624-1633.
[14] 印志同,宋海娜,孟凡凡,许晓明,喻德跃. 大豆光合气体交换参数的QTL分析[J]. 作物学报, 2010, 36(1): 92-100.
[15] 苗兴芬,朱命喜,徐文平,丁俊杰,于凤瑶,于永梅,杜升伟,刘春燕,陈庆山,胡国华. 大豆脂肪酸含量的QTL分析[J]. 作物学报, 2010, 36(09): 1498-1505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!