欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 121-132.doi: 10.3724/SP.J.1006.2010.00121

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻稳定高垩白率突变体的获得与理化特性分析

金田蕴1,李辉2,郭涛2,刘晓璐1,苏宁1,万建民1,2,*   

  1. 1中国农业科学院作物科学研究所,北京100081;2南京农业大学作物遗传与种质创新国家重点实验室/江苏省植物基因工程中心,江苏南京210095
  • 收稿日期:2009-06-30 修回日期:2009-08-29 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 万建民, E-mail: wanjm@caas.net.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101700)资助。

Analysis of Physiological and Biochemical Characteristics of Six Mutants with Stable High Percentage of Chalkiness in Rice Grains

JIN Tian-Yun1,LI Hui2,GUO Tao2,LIU Xiao-Lu1,SU Ning1,WAN Jian-Min1,2,*   

  1. 1Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 10081,China;2State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-06-30 Revised:2009-08-29 Published:2010-01-12 Published online:2009-11-17
  • Contact: WANG Jian-Min, E-mail: wanjm@caas.net.cn

摘要:

稻米品质的形成是遗传因素和环境因素相互作用的结果,而环境因素对稻米品质的影响也是通过水稻的生理过程起作用的。本实验经过多年多点种植,从日本晴的T-DNA插入突变体库中筛选出6份稳定高垩白率的突变体材料。蔗糖合酶、ADP-葡萄糖焦磷酸化酶(AGPase)、淀粉合酶、淀粉分支酶、淀粉去分支酶等酶活性的变化,均可能影响淀粉的合成及淀粉体的精细结构,导致稻米垩白的产生和品质的下降。从生理生化角度即从籽粒灌浆过程及淀粉合成途径中关键酶活性的变化及与成熟籽粒品质相关的重要指标解释了垩白形成的机理。

关键词: 水稻, 垩白, 突变体, 淀粉合成, 稻米品质

Abstract:

Chalkiness is an important quality character in rice, which is affected by comprehensive effects of genetic and environmental factors. Furthermore, the environmental factors affect the formation of chalkiness through the physiological and biochemical processes. Here, we screened six mutants with stable severe chalky rice grains from the T-DNA insertion mutant pool of cultivar Nipponbare. The changes in activities of the key enzymes associated with starch synthesis, including sucrose synthase, adenosine diphosphoglucose pyrophosphorylase (AGPase), starch synthase, starch branching enzyme and starch debranching enzyme in grains during the filling period, could impact the starch synthesis, the shape and fine structure of the starch granule, thus result in the formation of chalkiness. Temperature condition during grain filling is one of the most important environmental factors affecting the quality of rice. But high temperature stress did not take place during this experiment. To explain the mechanism of the formation of chalkiness from the physiological and biochemical aspects, we analyzed the fluctuation of the key enzyme activities associated with starch synthesis, sucrose content, starch content, and the ratio of amylose to total starch in mature grains. The results suggest that physiological studies of grain development are essential to reveal the formative mechanism of chalky rice.

Key words: Rice, Chalkiness, Mutants, Starch synthesis, Grain quality

[1]Xingchuang Q-Q(星川清亲) ed. Jiang P-Y(蒋彭炎), Xu D-H(许德海)trans. Anatomical Illustration: the Growth of Rice (解剖图说稻的生长). Shanghai:Shanghai Science and Technology Press, 1978 (in Chinese)
[2] Tan Z-B(谭振波), Kuang H-C(况浩池). Research on rice chalkiness. Seed (种子), 1993, (2): 36-42 (in Chinese)

[3] Cai Y-X(蔡一霞), Xu D-Y(徐大勇), Zhu Q-S(朱庆森). Recent advances in physiological mechanisms of rice quality development. Chin Bull Bot (植物学通报), 2004, 21(4): 419-428 (in Chinese with English abstract)

[4] Li T(李天), Liu Q-H(刘奇华). Effect of high temperature on sucrose content and sucrose-cleaving enzymes activity in rice during grain filling stage. Chin J Rice Sci(中国水稻科学), 2006, 20(6): 626-630 (in Chinese with English abstract)

[5] Zhang G-F(张国发), Wang S-H(王绍华), You J(尤娟), Wang Q-S(王强盛), Ding Y-F(丁艳锋), Ji Z-J(吉志军). Effect of higher temperature in different filling stages on rice qualities. Acta Agron Sin (作物学报), 2006, 32(2): 283-287 (in Chinese with English abstract)

[6] Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Effect of temperature at grain filling stage on starch biosynthetic metabolism in developing rice grains of early-indica.Sci Agric Sin (中国农业科学), 2003, 36(5): 492-501 (in Chinese with English abstract)

[7] He H-H(贺浩华), Peng X-S(彭小松), Liu B-Y(刘宜柏). Effect of environmental conditions on rice quality.Acta Agric Jiangxi (江西农业学报), 1997, 9(4): 66-72 (in Chinese with English abstract)

[8] Quan G-M(全国明), Zhang J-E(章家恩), Xu R-B(许荣宝), Xie L(谢利), Liu J-L(刘金苓). Review on the effect of environmental factors on rice quality. Chin Agric Sci Bull (中国农学通报), 2006, 22(4): 158-162 (in Chinese with English abstract)

[9] Tao L-X(陶龙兴), Wang X(王熹), Liao X-Y(廖西元), Shen B(沈波), Tan H-J(谭惠娟), Huang S-W(黄世文). Physiological effects of air temperature and sink-source volume at milk-filling stage of rice on its grain quality. Chin J Appl Ecol (应用生态学报), 2006, 17(4): 647-652 (in Chinese with English abstract)

[10] Zhang Y-J(张亚洁), Xu D-M(许德美), Sun B(孙斌), Dao G-H(刁广华), Lin Q-S(林强森), Yang J-C(杨建昌). Effects of cultivation methods on grain filling and chalky grains of upland and paddy rice.Sci Agric Sin (中国农业科学), 2005, 39(2): 256-264 (in Chinese with English abstract)

[11] Sheng Q(盛婧), Tao H-J(陶红娟), Chen L-G(陈留根). Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chin J Rice Sci(中国水稻科学), 2007, 21(4): 396-402 (in Chinese with English abstract)

[12] Zhao B-H(赵步洪), Zhang W-J(张文杰), Chang E-H(常二华), Wang Z-Q(王志琴), Yang J-C(杨建昌). Changes in activities of the key enzymes related to starch synthesis in rice grain during grain filling and their relationships with the filling rate and cooking quality. Chin J Rice Sci (中国水稻科学), 2004, 37(8): 1123-1129 (in Chinese with English abstract)

[13] Zhao B-H(赵步洪), Dong M-H(董明辉), Zhang H-X(张洪熙), Zhu Q-S(朱庆森), Yang J-C(杨建昌). Difference in quality characters of the grains at different positions within a hybrid rice panicle. J Yangzhou Univ (Agric & Life Sci Edn)(扬州大学学报·农业与生命科学版), 2006, 27(1): 38-42 (in Chinese with English abstract)

[14] Cheng F-M(程方民), Zhong L-J(钟连进), Shu Q-Y(舒庆尧), Huang H-H(黄华宏), Shi C-H(石春海), Wu P(吴平). Studies on the cooking and eating quality properties in chalky milled grains of early indica rice. Acta Agron Sin (作物学报), 2002, 28(3): 363-368 (in Chinese with English abstract)

[15] Shen P(沈鹏), Jin Z-X(金正勋), Luo Q-X(罗秋香), Jin X-Y(金学泳), Sun Y-L(孙艳丽). Relationship between activity of key starch synthetic enzymes during grain filling and quality of eating and cooking in rice. Chin J Rice Sci (中国水稻科学), 2006 , 20(1): 58-64 (in Chinese with English abstract)

[16] Yang J-C(杨建昌), Peng S-B(彭少兵), Gu S-L(顾世梁), Visperas R M, Zhu Q-S(朱庆森). Changes in activities of three enzymes associated with starch synthesis in rice grains during grain filling. Acta Agron Sin (作物学报), 2001, 27(2): 157-164 (in Chinese with English abstract)

[17] Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G. Fine mapping of the grain chalkiness QTL qPGWC-7in rice (Oryza sativa L.). Theor Appl Genet, 2009, 118: 581-590

[18] Coleman H D, Canam T, Kang K Y, Ellis D D, Mansfield S D. Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot, 2007, 58: 4257-4268

[19] Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.).Planta, 2004, 220: 9-16

[20] Woo M O, Ham T H, Ji H S, Choi M S. Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J, 2008, 54: 190-204

[21] Bao J S, Corke H, Sun M. Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor Appl Genet, 2002, 105: 898-905

[22] Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang S K, Okita T W, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y. Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell, 2008, 20: 1833-1849

[23] Huang Q-L(黄清龙), Ma J(马均), Cai G-Z(蔡光泽). Progress of correlation study between rice quality and chalkiness in japonica and indica rice. Chin Agric Sci Bull (中国农学通报), 2006, 22(1): 81-84 (in Chinese with English abstract)

[24] Bao J S, Corke H , Sun M. Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice (Oryza sativa L.). Theor Appl Genet, 2006, 113: 1185-1196

[25] Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of Amylose-Extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459-472

[26] Wang X-Z(王宪泽). Experimental Techniques of Biochemistry Principles and Methods (生物化学实验技术原理和方法). Beijing: China Agriculture Press, 2002. pp 75-88 (in Chinese)

[27] Shu X L, Shen S Q, Bao J S, Wu D X, Nakamura Y, Shu Q Y. Molecular and biochemical analysis of the gelatinization temperature characteristics of rice (Oryza sativa L.) starch granules. J Cereal Sci, 2006, 44: 40-48

[28] Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA Microarray. Plant Physiol, 2007, 144: 258-277

[29] Cheng F M, Zhong L J, Zhao NC, Liu Y, Zhang G P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005, 46: 87-95

[30] Wang E, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B L, Lin H G, Ma H, Zhang Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374

[31] Ohdan T, Francisco P B Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005, 422: 3229-3244

[32] Pan X-H(潘晓华), Li M-Y(李木英), Cao L-M(曹黎明), Liu S-Y(刘水英). Starch accumulation and changes in enzyme activities involved in starch synthesis during the development of rice endosperm. Acta Agric Univ Jiangxiensis (江西农业大学学报), 1999, 22(4): 456-462 (in Chinese with English abstract)

[33] Guo E-N(郭二男), Pan Z(潘增), Wang C-L(王才林), Lu S-H(卢少华). Studies on white belly grain of japonica rice. Acta Agron Sin (作物学报), 1983, 9(1): 31-38 (in Chinese with English abstract)

[34] Komiya T, Nara S. Changes in crystallinity and gelatinization phenomena of potato starch by acid treatment. StarchlStarke, 1986, 38: 9-13

[35] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28(3): 350-356

[36] He Y, Han Y H, Jiang L, Xu C W, Lu J F, Xu M J. Functional analysis of starch-synthesis genes in determiningrice eating and cooking qualities. Mol Breed, 2006, 18: 277-290

[37] Aoki N, Umemoto T, Yoshida S, Ishii T, Kamijima O, Matsukura U, Inouchi N. Genetic analysis of long chain synthesis in rice amylopectin. Euphytica, 2006, 151: 225-234

[38] Tanaka Y, Akazawa T. Enzymic mechanism of starch synthesis in ripening rice grains: VI. Isozymes of starch synthetase. Plant Cell Physiol,1971, 12: 493-505

[39] Okita T W. Is there an alternative pathway for starch synthesis. Plant Physiol, 1992, 100: 560-564

[40] Fettke J, Nunes-Nesi A, Alpers J, Szkop M, Fernie A R, Steup M. Alterations in cytosolic glucose-phosphate metabolism affect structural features and biochemical properties of starch-related heteroglycans. Plant Physiol, 2008, 148: 1614-1629

[41] Stark D M, Timmerman K P, Barry G F, Preiss J, Kishpre G M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylaze. Science, 1992, 258: 287-292

[42] Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organs? Plant Physiol, 1995, 107: 673-677

[43] Brown R C, Lemmon B E. The developmental biology of cereal endosperm.Trends Plant Sci, 1999, 4: 253-257

[44] Preiss J. Starch biosynthesis and its regulation. Biochem Soc Trans, 1991, 19: 539-547

[45] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342-348

[46] Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley P, Gidley M, Kosar-Hashemi B, Wang H, Larroque O, Ikea J, McMaugh S, Regina A, Rahman S, Morell M, Li Z Y. Effects of starch synthaseIIa gene dosage on grain, protein and starch in endosperm of wheat. Theor Appl Genet,2007, 115: 1053-1065

[47] Nakamura1 Y, Francisco P B, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectinstructure and starch quality betweenjaponicaand indicarice varieties. Plant Mol Biol, 2005, 58: 213-227

[48] Zhang XL, Colleoni C, Ratushna V, Colleoni M S, James M G, Myers A M. Molecular characterization demonstrates that the Zea maysgene sugarycodes for the starch synthase isoform SSIIa. Plant Mol Biol, 2004, 54: 865-879

[49] Harn C, Knight M, Ramakrishnan A, Guan H P, Keeling P L, Wasserman B P. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Mol Biol, 1998, 37: 639-649

[50] Kouich M, Koji K, Yuji A, Kawasaki T, Shimada H, Baba T. Starch branching enzymes from immature rice seeds. J Biochem, 1992, 112: 643-651

[51] Firouzabadi F N, Vincken J P, Ji Q, Suurs L C J M, Buléon A, Visser R G F. Accumulation of multiple-repeat starch-binding domains (SBD2-SBD5) does not reduce amylose content of potato starch granules. Planta, 2007, 225: 919-933

[52] Boyer C D, Preiss J. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol, 1981, 67: 1141-1145

[53] Yamanouchi H, Nakamura Y. Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol,1992, 33: 985-991

[54] Kim W S, Kim J, Krishnan H B, Nahm B H. Expression of Escherichia coli branching enzyme in caryopses of transgenic rice results in amylopectin with an increased degree of branching. Planta, 2005, 220: 689-695

[55] Peng J S, Zheng Z R , Liu D, Hu Z B. Starch biosynthesis and its key enzymes. Plant Physiol Commun, 1997, 33: 297-303

[56] Akiho K, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y. The starch debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol, 1999, 121: 399-409

[57] Wattebled F, Planchot V, Dong Y, Szydlowski N, Pontoire B, Devin A, Ball S, D’Hulst C. Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and for overlapping functions of debranching enzymes in Arabidopsis leaves. Plant Physiol, 2008, 148: 1309-1323

[58] Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm .J Exp Bot, 2009, 60: 1009-1023

[59]Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Plant Physiol,1997, 48: 67-87

[60] Fontaine T. Toward an understanding of the biogenesis of the starch granule, evidence that chlamydomonas soluble starch synthaseII controls the synthesis of intermediate size glucans of amylopectin. J Biol Chem, 1993, 268: 16223-16230

[61] Akiho K, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y. The starch debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol, 1999, 121: 399-409
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!