作物学报 ›› 2010, Vol. 36 ›› Issue (1): 177-183.doi: 10.3724/SP.J.1006.2010.00177
刘新龙1,2,毛钧1,2,陆鑫1,2,马丽1,2,Karen Sarah AITKEN4,Phillip Andrew JACKSON4,蔡青1,3,范源洪1,2,*
LIU Xin-Long1,2,MAO Jun1,2,LU Xin1,2,MA Li1,2,Karen Sarah AITKEN 4,Phillip Andrew JACKSON4,CAI Qing1,3,FAN Yuan-Hong1,2,*
摘要:
采用甘蔗商业品种Co419与野生种割手密Y75/1/2杂交,获得269个单株,组成F1群体,用F102/356与商业品种ROC25回交获得266个单株,组成BC1群体。利用筛选的多态性条带丰富的36对SSR引物和12对AFLP引物,对两个群体进行PCR扩增和分子遗传连锁分析,构建甘蔗分子遗传连锁图谱。用F1群体获得630个分离标记,经c2检测,298个标记为单双剂量标记,占总标记数的47%;用BC1群体获得571个分离标记,有264个标记为单双剂量标记,占总标记数的46%;4个亲本获得单双剂量标记的数量依次为Co419>02/356>Y75/1/2>ROC25。在LOD≥5.0,相邻标记遗传距离≤40 cM的条件下,F1群体有134个单双剂量标记被纳入55个连锁群,其中39个连锁群归属8个同源组,16个未列入,总遗传距离为1 458.3 cM,标记间平均图距为10.9 cM;BC1群体有133个单双剂量标记被纳入47个连锁群,其中34个连锁群归属于8个同源组,13个连锁群未列入,总遗传距离为1 059.6 cM,标记间平均图距为8.0 cM。从4个亲本单双剂量标记进入的连锁群数来看,Co419最多,归入34个连锁群,其次为Y75/1/2,归入20个连锁群,第3为02/356和ROC25,归入19个连锁群。研究结果表明, 从单双剂量标记比例、形成连锁群数量、总遗传距离来看,F1群体构图质量要优于BC1群体。
[1] D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann J C. Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet, 1996, 250: 405-413[2] Bhat S R, Gill B S. The implication of 2n egg gametes in nobilisation and breeding of sugarcane. Euphytica, 1985, 34: 377-384[3] Irvine J E. Saccharum species as horticultural classes. Theor Appl Genet, 1999, 98: 186-194[4] D’Hont A, Paulet F, Glaszmann J C. Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chrom Res, 2002, 10: 253-262[5] Brown J S, Schnell R J, Power E J, Douglas S L, Kuhn D N. Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter-and intra species relationships using microsatellite markers. Genet Resour Crop Evol, 2007, 54: 627-648[6] Grivet L, Arruda P. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Curr Opin Plant Biol, 2001, 5: 122-127[7] Aitken K S, Jackon P A, McIntyre C L. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo (eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet, 2005, 110: 789-801[8] Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J C. RFLP mapping incultivated sugarcane (Saccharum spp.): Genome organisation in a highly polyploid and Aneuploid interspecific hybrid. Genetics, 1996, 142: 987-1000[9] Hoarau J Y, Offmann B, D’ Hont A, Risterucci AM, Roques D, Glaszmann J C, Grivet L. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.): 1. Genome mapping with AFLP markers. Theor Appl Genet, 2001, 103: 84-97[10] Al-Janabi S M, Honeycutt R J, McClelland M, Sobral B W S. A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics, 1993, 134: 1249-1260[11] Da Silva J A G, Sorrells M E, Burnquist W L, Tanksley S D. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome, 1993, 36: 782-791[12] Ming R, Liu S C, Lin Y R, Da Silva J A G, Wilson W, Braga D, van Deynze A, Wenslaff T F, Wu K K, Moore P H, Burnquist W, Sorrells M E, Irvine J E, Paterson A H. Detailed alignment of Saccharum and Sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes. Genetics, 1998, 150: 1663-1682[13] Ming R, Liu S C, Bowers J E, Moore P H, Irvine J E, Paterson A H. Construction of Saccharum consensus genetic map from two interspecific crosses. Crop Sci, 2002, 42: 570-583[14] Mudge J, Andersen W R, Kehrer R L, Fairbanks D J. A RAPD genetic map of Saccharum officinarum. Crop Sci, 1996, 36: 1362-1366[15] Guimaraes C T, Sills G R, Sobral B W S. Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA, 1997, 94: 14261-14266[16] D’Hont A, Lu Y H, Gonzalez De Leon D, Grivet L, Feldmann P, Lanaud C, Glaszmann J C. A molecular approach to unravelling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome, 1994, 37: 222-230[17] Fang X-J(方宣钧), Wu W-R(吴为人), Tang J-L(唐纪良). DNA Marker Assisted Selection Breeding of Crop. Beijing: China Science Press, 2002. pp 22-28 (in Chinese)[18] Cai Q, Aitken K, Fan Y H, Piperidis G, Jackson P, McIntyre C L. A preliminary assessment of the genetic relationship between Erianthus rockii and the ‘‘Saccharum complex’’ using micro-satellite (SSR) and AFLP markers. Plant Sci, 2005, 169: 976-984[19] Wu K K, Burnquist W, Sorrells M E, Tew T L, Moore P H, Tanksley S D. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet, 1992, 83: 294-300[20] Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993, 3: 739-744[21] Xiao B-G(肖炳光), Xu Z-L(徐照丽), Chen X-J(陈学军), Shen A-R(申爱荣), Li Y-P(李永平), Zhu J(朱军). Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tab Sin (中国烟草学报), 2006, 12(4): 35-40 (in Chinese with English abstract)[22] Ripol M I, Churchill G A, Da Silva J A G, Sorrells M. Statistical aspects of genetic mapping in autopolyploids. Gene, 1999, 235: 31-41[23] Wang G-L(王关林), Fang H-J(方宏筠). Plant Genetic Engineering (植物基因工程). Beijing: China Science Press, 2002. pp 232-239 (in Chinese) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
[3] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[4] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[5] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[6] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[7] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[8] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[9] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[10] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[11] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[12] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[13] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[14] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
[15] | 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859. |
|