作物学报 ›› 2010, Vol. 36 ›› Issue (4): 539-548.doi: 10.3724/SP.J.1006.2010.00539
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
张清哲1,马锦花1,陈新建1,*,傅永福2,*
ZHANG Qing-Zhe1,MA Jin-Hua1,CHEN Xin-Jian1,*,FU Yong-Fu2,*
摘要:
CONSTANS (CO)是植物光周期开花途径中的关键基因之一。通过RT-PCR和生物信息学的方法,克隆了大豆GmCOL4基因并分析其结构特征,用实时荧光定量PCR (quantitative real-time RT-PCR, qRT-PCR)研究了其转录特点。结果表明,GmCOL4的4个外显子编码一个具有B-box和CCT保守结构域的CO-like蛋白,在序列上与拟南芥(Arabidopsis thaliana) COL9相似性最高,为64.3%。分析其转录特征发现,GmCOL4表达主要受生物节律的影响,受光的调节作用较弱。器官特异性表达分析发现,GmCOL4主要在大豆叶片中表达,表达模式与COL9相似。这为大豆中CO基因家族的功能研究提供了重要的依据。
[1] G arner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res, 1920, 18: 553-606 [2] Shaw D, Goldman B D. Gender differences in influence of prenatal photoperiods on postnatal pineal melatonin rhythms and serum prolactin and follicle-stimulating hormone in the Siberian hamster(Phodopus sungorus). Endocrinology, 1995, 136: 4237-4246[3] Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857[4] Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116-1120[5] Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293-297 [6] Sawa M, Nusinow D A, Kay S A, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length mea- surement in Arabidopsis. Science, 2007, 318: 261-265 [7] Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303: 1003-1006 [8] Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965 [9] Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286: 1960-1962 [10] Onouchi H, Igeno M I, Perilleux C, Graves K, Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell, 2000, 12: 885-900 [11] Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288: 1613-1616 [12] Borden K L. RING fingers and B-boxes: Zinc-binding protein-protein interaction domains. Biochem Cell Biol, 1998, 76: 351-358 [13] Strayer C, Oyama T, Schultz T F, Raman R, Somers D E, Mas P, Panda S, Kreps J A, Kay S A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 2000, 289: 768-771 [14] Torok M, Elkin L D. Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 2000, 67: 63-71 [15] Robson F, Costa M M, Hepworth S R, Vizir I, Pineiro M, Reeves P H, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J, 2001, 28: 619-631 [16] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484 [17] Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J, 2003, 36: 82-93 [18] Serrano G, Herrera-Palau R, Romero J M, Serrano A, Coupland G, Valverde F. Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol, 2009, 19: 359-368 [19] Griffiths S, Dunford R P, Coupland G, Laurie D A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol, 2003, 131: 1855-1867 [20] Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol, 1998, 37: 763-772 [21] Holefors A, Opseth L, Ree Rosnes A K, Ripel L, Snipen L, Fossdal C G, Olsen J E. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol Biochem, 2009, 47: 105-115 [22] Hu R-B(胡瑞波). Molecular Cloning, Expression Profiles and Functional Analysis of FT/TFL1 Genes in Soybean (Glycine max). PhD Dissertation of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English Abstract) [23] Chen Q J, Zhou H M, Chen J, Wang X C. Using a modified TA cloning method to create entry clones. Anal Biochem, 2006, 358: 120-125 Cheng X F, Wang Z Y. Overexpression of COL9, a CONSTANS- LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J, 2005, 43: 758-768 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824. |
[9] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[10] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[11] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[12] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[15] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
|