欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 701-708.doi: 10.3724/SP.J.1006.2010.00701

• 研究简报 • 上一篇    下一篇

棉花非叶绿色器官光合能力的差异及与物质生产的关系

张亚黎,冯国艺,胡渊渊,姚炎帝,张旺锋*   

  1. 石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室,新疆石河子832003
  • 收稿日期:2009-11-07 修回日期:2010-02-06 出版日期:2010-04-12 网络出版日期:2010-03-03
  • 通讯作者: 张旺锋,E-mail:zwf_shzu@163.com;zhwf_agr@shzu.edu.cn;Tel:0993-2057326
  • 基金资助:

    本研究由国家科技支撑计划项目(2007BAD44B07, 2006BAD21B02)和国家自然科学基金项目(30260051)资助。

Photosynthetic Activity and Its Correlation with Matter Production in Non-foliar Green Organs of Cotton

ZHANG Ya-Li,FENG Guo-Yi,HU Yuan-Yuan,YAO Yan-Di,ZHANG Wang-Feng*   

  1. The Key Laboratory of Oasis Eco-agriculture,Xinjiang Production and Construction Croup,Shihezi University,Shihezi 832003,China
  • Received:2009-11-07 Revised:2010-02-06 Published:2010-04-12 Published online:2010-03-03
  • Contact: ZHANG Wang-Feng,E-mail:zwf_shzu@163.com;zhwf_agr@shzu.edu.cn;Tel:0993-2057326

摘要:

在田间条件下,以3个杂交棉品种(鲁棉研25、石杂2号和新陆早43)2个常规棉花品种(新陆早13和新陆早33)为试验材料,通过两年试验研究了不同类型品种冠层叶片和非叶绿色器官(苞叶、铃壳和茎秆)的群体光合速率、叶绿素含量、叶绿素荧光参数和光合机构电子传递特性,及其与光合物质生产的关系。结果表明,杂交棉石杂2号和新陆早43号非叶绿色器官的群体光合速率显著高于常规棉品种,其中果实(铃壳和苞叶)和茎秆的群体光合速率分别比2个常规棉平均高85.1%197.6%。叶片的叶绿素含量和实际光化学效率最高,铃壳次之,苞叶和茎秆最小;与常规棉品种相比,杂交棉品种叶片和苞叶的实际光化学效率无显著差异,但铃壳和茎秆的实际光化学效率显著较高;非叶绿色器官光合物质生产能力的提高与其对强光的适应能力和抗光抑制能力关系密切。

关键词: 非叶绿色器官, 叶绿素荧光, 杂交棉, 光合物质生产

Abstract:

In addition to the green leaves, commonly considered as the primary sources of photosynthate production, higher plants can potentially use almost all vegetative and reproductive structures to perform photosynthetic CO2 assimilation. Study on photosynthetic activity of the different green organs is of great significance to develop the potential of photosynthesis of the whole plant. The green organs in cotton (Gossypium hirsutum L.) consist of leaf and non-foliar organs including bract, boll, and stem. Field experiments were conducted to evaluate the chlorophyll content, chlorophyll fluorescence, electron transport of photosynthetic apparatus and canopy photosynthesis rate, and the correlation of photosynthetic activity with matter production in different green organs of cotton. Three super high-yielding hybrid cotton cultivars, Lumianyan 25, Xinluzao 43, and Shiza 2, and two traditional cotton cultivars, Xinluzao 13 and Xinluzao 33, were grown with Under-Mulch-Drip irrigation in Xinjiang province. The results revealed that both the chlorophyll content and actual quantum yield of PS II were higher in leaf, followed by boll, bract and stem. Compared to traditional cotton, both hybrid cotton cultivars had higher actual quantum yield of PS II in boll and stem, whereas no differences were observed on leaf and bract. As expected, higher canopy photosynthesis rate was presented in non-foliar green organs of high-yielding hybrid cotton. Furthermore, there were significant correlations of dry matter production with adaptability of high-light and faster restoration after photoinhibition in non-foliar green organs of high-yielding hybrid cotton.

Key words: Non-foliar green organ, Chlorophyll fluorescence, Hybrid cotton, Matter production

[1]         Wei A-L(魏爱丽), Wang Z-M(王志敏). A study on the contribution of different organs to grail weight in different gene type wheat. J Triticeae Crops (麦类作物学报), 2001, 21(2): 57–61 (in Chinese with English abstract)

[2]         Li Z-X(李朝霞), Zhao S-J(赵世杰), Meng Q-W(孟庆伟), Zou Q(邹琦), Tian J-C(田纪春). Photosynthetic characteristics in non-leaf organs of winter wheat cultivars differing in grain-leaf ratio. Acta Agron Sin (作物学报), 2004, 30(5): 419–426 (in Chinese with English abstract)

[3]         Tambussi E A, Bort J, Guiamet J J, Nogus S, Araus J L. The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci, 2007, 26: 1–16

[4]         Zhang Y-P(张永平), Wang Z-M(王志敏), Huang Q(黄琴), Xie M(谢岷). Changes of chloroplast ultramicrostructure and function of different green organs in wheat under limited irrigation. Acta Agron Sin (作物学报), 2008, 34(7): 1213–1219 (in Chinese with English abstract)

[5]         Brown K J. Translocation of carbohydrates in cotton: Movement to the fruiting bodies. Ann Bot, 1968, 32: 703–713

[6]         Elmore C D. Contributions of the capsule wall and bracts to the developing cotton fruit. Crop Sci, 1973, 13: 751–752

[7]         Wullschleger S D, Oosterhuis D M. Photosynthetic and respiratory activity of fruiting forms within the cotton canopy. Plant Physiol, 1990, 94: 463–469

[8]         Wullschleger S D, Oosterhuis D M. Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci, 1990, 30: 1259–1264

[9]         Du M-W(杜明伟), Feng G-Y(冯国艺), Yao Y-D(姚炎帝), Luo H-H(罗宏海), Zhang Y-L(张亚黎), Xia D-L(夏东利), Zhang W-F(张旺锋). Canopy characteristics and its correlation with photosynthesis of super high-yielding hybrid cotton Biaoza A1 and Shiza 2. Acta Agron Sin (作物学报), 2009, 35(6): 1–10 (in Chinese with English abstract)

[10]      Du M-W(杜明伟), Luo H-H(罗宏海), Zhang Y-L(张亚黎), Yao Y-D(姚炎帝), Zhang W-F(张旺锋), Xia D-L(夏东利), Ma L(马丽), Zhu B(朱波). Photosynthesis characteristics of super-high-yield hybrid cotton in Xinjiang. Sci Agric Sin (中国农业科学), 2009, 42(6): 1952–1962 (in Chinese with English abstract)

[11]      Dong S-T(董树亭), Gao R-Q(高荣岐), Hu C-H(胡昌浩), Wang Q-Y(王群瑛), Wang K-J(王空军). Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin (作物学报), 1997, 23(3): 318–325 (in Chinese with English abstract)

[12]      Ma F-Y(马富裕), Zhang W-F(张旺锋). Research and determining method of cotton canopy apparent photosynthesis. J Shihezi Univ (Nat Sci Edn) (石河子大学学报·自然科学版), 1998, (2): 46–50 (in Chinese with English abstract)

[13]      Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87–92

[14]      Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Biol, 1991, 42: 301–313

[15]      Oxborough K, Baker N R. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynth Res, 1997, 54: 135–142

[16]      Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivophotosynthesis. In: Schulze E D, Caldwell M M, eds. Ecophysiology of Photosynthesis. Berlin, Germany: Springer-Verlag, 1994

[17]      Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res, 1980, 38: 687–701

[18]      Ralph P J, Gademann R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat Bot, 2005, 82: 222–237

[19]      White A J, Critchley C. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res, 1999, 59: 63–72

[20]      Aschan G, Pfanz H. Non-foliar photosynthesis: A strategy of additional carbon acquisition. Flora, 2003, 198: 81–97

[21]      Wullschleger S D, Oosterhuis D M, Hurren R G, Hanson P J. Evidence for light-dependent recycling of respired carbon dioxide by the cotton fruit. Plant Physiol, 1991, 97: 574–579

[22]      Berveiller D, Kierzkowski D, Damesin C. Interspecific variability of stem photosynthesis among tree species. Tree Physiol, 2007, 27: 53–61

[23]      Wang Q, Zhang Q D, Zhu X G, Lu C M, Kuang T Y, Li C Q. PSII photochemistry and xanthophylls cycle in two super-high-yield rice hybrids, Liangyoupeijiu and Hua’an 3 during photoinhibition and subsequent restoration. Acta Bot Sin, 44: 1297–1302

[24]      Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006, 29: 315–330
[1] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[2] 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[3] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
[4] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[5] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[6] 吴含玉,张雅君,张旺锋,王克如,李少昆,姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2): 248-255.
[7] 高阳,刘卫国,李淑贤,刘婷,周涛,杜勇利,张熠,李碧琴,杨文钰. 荫蔽锻炼对大豆苗期光合特性的影响[J]. 作物学报, 2019, 45(1): 91-99.
[8] 许耀照,曾秀存,张芬琴,孙佳,孙万仓,武军艳,方彦,刘自刚,孙柏林. 白菜型冬油菜叶片结构和光合特性对冬前低温的响应[J]. 作物学报, 2017, 43(03): 432-441.
[9] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[10] 剧成欣,陶进,钱希旸,顾骏飞,张耗,赵步洪,刘立军,王志琴,杨建昌. 不同年代中籼水稻品种的叶片光合性状[J]. 作物学报, 2016, 42(03): 415-426.
[11] 占东霞,张超,张亚黎,罗宏海,勾玲,张旺锋. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献[J]. 作物学报, 2015, 41(12): 1880-1887.
[12] 朱聪聪,张洪程,郭保卫,曹利强,江峰,葛梦婕,花劲,宋云生,周兴涛,霍中洋,许轲, 戴其根,魏海燕,朱大伟. 钵苗机插密度对不同类型水稻产量及光合物质生产特性的影响[J]. 作物学报, 2014, 40(01): 122-133.
[13] 叶露幻,沈唯军,郑宝刚,宋涛,陈国祥,吕川根. 两优培九剑叶衰老过程光合膜功能及蛋白质复合物的变化[J]. 作物学报, 2013, 39(11): 2030-2038.
[14] 冯国艺,干秀霞,杨美森,姚炎帝,罗宏海,张亚黎,张旺锋. 两个杂交棉F1、F2代及亲本冠层结构与物质生产特征[J]. 作物学报, 2013, 39(09): 1635-1643.
[15] 杜伟莉,高杰,胡富亮,郭德林,张改生,张仁和,薛吉全. 玉米叶片光合作用和渗透调节对干旱胁迫的响应[J]. 作物学报, 2013, 39(03): 530-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!