欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 863-870.doi: 10.3724/SP.J.1006.2010.00863

• 耕作栽培·生理生化 • 上一篇    下一篇

水分胁迫下外源ABA提高甘蔗抗旱性的作用机制

李长宁1,2,Manoj Kumar SRIVASTAVA2,农倩1,李杨瑞2,*   

  1. 1 广西大学农学院,广西南宁530004;2广西作物遗传改良生物技术重点开放实验室,广西南宁530007
  • 收稿日期:2009-10-20 修回日期:2010-02-05 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 李杨瑞,E-mail: lyr@gxaas.net
  • 基金资助:

    本研究由广西农业科学院博士后研究专项(博后74602),广西科技攻关项目(桂科攻0782004-3),国家科技支撑计划项目(2007BAD30B03)和现代农业产业技术体系专项资金资助。

Mechanism of Tolerance to Drought in Sugarcane Plant Enhanced by Foliage Dressing of Abscisic Acid under Water Stress

LI Chang-Ning1,2,Manoj Kumar SRIVASTAVA2,NONG Qian1,LI Yang-Rui2,*   

  1. 1College of Agriculture,Guangxi University,Nanning 530004,China;2Guangxi Crop Genetic Improvement and Biotechnology Laboratory,Nanning 530007,China
  • Received:2009-10-20 Revised:2010-02-05 Published:2010-05-12 Published online:2010-03-15
  • Contact: LI Yang-Rui,E-mail:lyr@gxaas.net

摘要:

以抗旱甘蔗品种ROC22为材料,调查水分胁迫及胁迫加喷施脱落酸(ABA)对甘蔗内源ABA合成及相关生理生化作用的影响。结果表明,干旱及干旱加外施ABA的条件下,甘蔗内源ABA合成水平上升,但干旱加ABA处理增幅更显著,甘蔗叶内的脯氨酸(Pro)、H2O2、丙二醛(MDA)含量增加,而ABA处理能缓解MDA的积累,使其含量处于低水平,ABA处理能防止叶绿素降解并对干旱引起的最大光能转化效率(Fv/Fm)、PSII实际量子效率(ΦPSII)下降有明显的缓解作用。干旱条件下,H2O2的积累伴随着抗氧化作用的酶CAT、GPX、GR和APX的活性提高,而ABA处理能进一步提高这些相关酶的活性而逐渐降低H2O2的含量,表明干旱条件下,外施ABA能增强甘蔗的抗氧化防护系统,提高抗旱性。

关键词: ABA, 甘蔗, 抗旱性, H2O2, 抗氧化酶, 叶绿素荧光

Abstract:

Drought is a major limiting factor for sugarcane growth. Abscisic acid (ABA) regulates much important plant physiological and biochemical processes, and induces tolerance to different stresses including drought. Understanding the mechanism of tolerance to drought in sugarcane plant with foliage dressing of ABA under water stress would facilitate breeding and field management for improving drought resistance. Thus, an experiment was set up to investigate the interrelationship between drought induced ABA biosynthesis and antioxidative defense system, and to confer the farther role of foliar application of ABA in imparting drought tolerance to the sugarcane plant. The treatments were: T1 (drought), T2 (drought + foliar application of 15 µmol L–1 ABA) and C (control, normal irrigation) using a drought tolerant cultivar ROC22. The results showed that drought treatment (T1) enhanced the ABA concentration in leaf that was significantly higher in combined treatment (T2), suggesting the ABA biosynthesis was triggered in leaf by the ABA application. Both T1 and T2 resulted in an increase in proline, H2O2 and MDA contents while the exogenous ABA alleviated the increase in MDA content. ABA application decreased the degradation of chlorophyll, and counteracted, at least in part, the decrease in maximal PSII efficiency (Fv/Fm) and quantum efficiency of PSII (ΦPSII). Overproduction of H2O2 in T1 was followed by increasing activities of CAT, GPX, GR, and APX, which was further improved by the ABA treatment (T2). A decrease in H2O2 level with increasing stress in T2 showed that ABA highly induced antioxidative defense system which was found to be vanished progressively in T1. The results clearly suggest that the tolerant cultivar showed an enhanced protective system against drought conditions, and the foliar application of ABA further improved its tolerance by triggering the over expression of antioxidative defense system.

Key words: ABA, Sugarcane, Drought tolerance, Antioxidative enzyme, H2O2, Chlorophyll fluorescence


[1] Duan B L, Yang Y Q, Lu Y W, Helena K, Frank B, Li C Y. Interactions between water deficits, ABA, and provenances in Picea asperata. J Exp Bot, 2007, 58: 3025-3036

[2] Jiang M Y, Zhang J H. Abscisic acid and antioxidant defense in plant Cells. Acta Bot Sin, 2004, 46: 1-9

[3] Ikegami K, Okamoto M, Seo M, Koshiba T. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res, 2009, 122: 235-243

[4] Zhang J H, Jia W S, Yang J C, Ismail A M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res, 2006, 97: 111-119

[5] Jiang M Y, Zhang J H. Role of abscisic acid in water stress induced antioxidant defence in leaves of maize seedlings. Free Radical Res, 2002, 36: 1001-1015

[6] Jiang M Y, Zhang J H. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410

[7] Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42: 1265-1273

[8] Murata Y, Pei Z M, Mori I C, Schroeder J L. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 2001, 13: 2513-2523

[9] Zhang X, Zhang L, Dong F C, Gao J F, Galbraith D W, Song C P. Hydrogen peroxide is involved in abscisic acid induced stomatal closure in Vicia faba. Plant Physiol, 2001, 126: 1438-1448

[10] Anderson M D, Prasad T K, Martin B A, Stewart C R. Differential gene expression in chilling acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol, 1994, 105: 331-339

[11] Guan L Q, Scandalios J G. Two structurally similar maize cytosolic superoxide dismutase genes, Sod 4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol, 1998, 117: 217-224

[12] Kamminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K. Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radical Res, 1999, 31: 219-225

[13] Shao H B, Liang Z S, Shao M A, Wang B C. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surfaces, 2005, 42: 107-113

[14] Wang W(王玮), Zhang F(张枫), Li D-Q(李德全). The effects of exogenous ABA on osmotic adjustment in maize roots under osmotic stress. Acta Agron Sin (作物学报), 2002, 28(1): 121-126 (in Chinese with English abstract)

[15] Agarwal S, Sairam R K, Srivastava G C, Meena R C. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant, 2005, 49: 541-550

[16] Li C Y, Yin C Y, Liu S R. Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application. Environ Exp Bot, 2004, 51: 237-246

[17] Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 1998, 153: 488-496

[18] Hu XCalcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol, 2007, 173: 27-38, Jiang M, Zhang J, Zhang A, Lin F, Tan M.

[19] Health R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem Biophysics, 1968, 125: 189-198

[20] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies. Plant Soil, 1973, 39: 205-207

[21] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411-416

[22] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121-126

[23] Schaedle M, Bassham J A. Chloroplast glutathione reductase. Plant Physiol, 1977, 59: 1011-1012.

[24] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880

[25] Zheng X, Van Huystee R B. Peroxidase regulated elongation of segments from peanut hypocotyls. Plant Sci, 1992, 81: 47-56

[26] Liu J, Jiang M Y, Zhou Y F, Liu Y L. Production of polyamines is enhanced by endogenous abscisic acid in maize seedlings subjected to salt stress. J Integr Plant Biol, 2005, 47: 1326-1334

[27] Gomez C A, Arbona V, Jacas J, Primo M E, Talon M. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul, 2003, 21: 234-240

[28] Iqbal M, Ashraf M, Rehman S, Rha E S. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploid wheat (Triticum aestivum L.) plants under salt stress? Bot Studies, 2006, 47: 239-250

[29] Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989, 28: 1057-1060

[30] Bassi R, Rigoni F, Giacometti G M. Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol, 1990, 52: 1187-1206

[31] Kause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basis. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349

[32] Jiang M Y, Zhang J H. Involvement of plasma membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in leaves of maize seedling. Planta, 2002, 215: 1022-1030

[33] Shinozaki K, Yamaguchi S K. Gene expression and signal transduction in water stress response. Plant Physiol, 1997, 115: 327-334
[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[5] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[6] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[7] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[8] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[9] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[10] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[11] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[12] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[13] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[14] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[15] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!