欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1221-1225.doi: 10.3724/SP.J.1006.2010.01221

• 研究简报 • 上一篇    下一篇

条锈菌诱导的小麦bZIP转录因子基因的克隆及表达分析

张毅1,夏宁1,张岗1,郭军1,黄丽丽1,康振生1,2,*   

  1. 1 西北农林科技大学植物保护学院,陕西杨凌 712100;2 西北农林科技大学陕西省农业分子生物学重点实验室,陕西杨凌 712100
  • 收稿日期:2009-12-30 修回日期:2010-03-19 出版日期:2010-07-12 网络出版日期:2010-04-28
  • 通讯作者: 康振生, E-mail: kangzs@nwsuaf.edu.cn; Tel: 029-87091312
  • 基金资助:

    本研究由国家自然科学基金重点项目(30930064),现代农业产业技术体系建设专项,高等学校学科创新引智计划项目(B07049)和国家"十一五"科技支撑计划项目(2006BAD08A05)资助.

Cloning and Expression Analysis of a bZIP Transcription Factor Gene in Wheat Induced by Stripe Rust Pathogen

ZHANG Yi1,XIA Ning1,ZHANG Gang1,GUO Jun1,HUANG Li-Li1,KANG Zhen-Sheng1,2,*   

  1. 1College of Plant Protection,Northewst A&F University,Yangling 712100,China;2Shaanxi Provincial Key Laboratory of  Molecular Biology for Agriculture,Northwest A&F University,Yangling 712100,China
  • Received:2009-12-30 Revised:2010-03-19 Published:2010-07-12 Published online:2010-04-28
  • Contact: KANG Zhen-Sheng,E-mail: kangzs@nwsuaf.edu.cn; Tel: 029-87091312

摘要:

采用电子克隆和RT-PCR方法,从条锈菌诱导的小麦品种水源11的cDNA中分离到一个编码bZIP转录因子基因的cDNA序列,暂被命名为TabZIPTabZIP包含一个完整的1 071 bp的开放阅读框,编码356个氨基酸,具有典型的bZIP保守结构域;与水稻、玉米、拟南芥等植物bZIP蛋白的氨基酸序列相似性较高;TabZIP基因在小麦根中的表达量丰富,而在茎和叶中表达量很小;在小麦与条锈菌非亲和组合中,TabZIP基因高水平表达,而在亲和组合中没有明显的变化;防卫相关激素乙烯、茉莉酸也可诱导该基因的快速上调表达,表明TabZIP可能通过乙烯、茉莉酸信号途径介导小麦对条锈病的防御反应。

关键词: 小麦, 条锈菌, bZIP转录因子, 电子克隆, 基因表达

Abstract:

In plant, basic leucine zipper (bZIP) transcription factors play various roles in developmental processes and in response to biotic and abiotic stimuli. In the present study, a novel bZIP gene, designated as TabZIP, was isolated from wheat leaves infected by Puccinia striiformis f. sp. tritici using in silico cloning and reverse transcription PCR approaches. TabZIP was predicted to encode a 356 amino-acid protein, which contained a bZIP transcription factor basic domain signature and a leucine zipper motif. Multiple alignment analysis based on the amino acids encoded by different bZIP genes from rice (Oryza sativa), maize (Zea mays), Arabidopsis thaliana, indicated that TabZIP was conserved among the three species of plants with highly sequence similarity. The transcript level of TabZIP was relatively high in root, but low in stem and leaf. Real-time PCR analysis revealed that TabZIP gene was rapidly and dramatically induced during incompatible interaction, whereas there was no significant effect in compatible interaction. Meanwhile, the expression of TabZIP was also induced by exogenous methyl jasmonate and ethephon. On the basis of these results, we postulate that the transcription factor encoded by gene TabZIP may be involved in wheat defense response to stripe rust fungus infection through ethylene- or jasmonic acid-dependent signal transduction pathways.

Key words: Wheat, Stripe rust fungus, bZIP transcription factor, In-silico cloning, Gene expression

[1]  Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337

[2]  Jia Y-T(贾燕涛). Plant Disease Resistance Signaling Pathways. Chin Bull Bot (植物学通报), 2003, 20(5): 602–608 (in Chinese with English abstract)

[3]  Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol, 2001, 4: 301–308

[4]  Singh K B, Foley R C, Onate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430–436

[5]  Jakoby M, Weisshaar B, Droge-Laser W, Tiedemann J, Kroij T, Parcy F. The family of bZIP transcription factors in Arabidopsis thaliana. Trends Plant Sci, 2002, 7: 106–111

[6]  Kim S Y, Thomas T L. A family of basic leucine zipper proteins bind to seed-specification elements in the carrot Dc3 gene promoter. J Plant Physiol, 1998, 152: 607–613

[7]  Niu X P, Renshaw-Gegg L, Miller L, Guiltinan M J. Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Plant Mol Biol, 1999, 41: 1–13

[8]  Fujita M, Fujiata Y, Noutoshi Y, Takshashi F, Narusaka Y, Yamaguchi-shinozaki K and Shinozaki K. Crosstalk between abiotic and biotic stress response: A current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9: 436–442

[9]  Meng X B, Zhao W S, Lin R M, Wang M, Peng Y L. Identification of a novel rice bZIP-Type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Mol Biol, 2005, 23: 301–313

[10]Lee S C, Choi H W, Hwang I S, Choi D S, Hwang B K. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006, 224: 1209–1225

[11] Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll  (西北农学院学报), 1984, 12(4):18–28 (in Chinese with English abstract)

[12]Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834

[13] Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet, 2002, 106: 74–83

[14]      The Rice Chromosomes 11 and 12 sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol, 2005, 3: 20

[15]      Alexandrow N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B, Feldmann K A. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol, 2009, 69: 179–194

[16]      Zhang Y, Zhang G, Xia N, Wang X J, Huang L L, Kang Z S. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol,2009, 73: 88–94

[17]      Pater S, Pham K, Memelink J, Kijne J. Binding specificity and tissue-specific expression pattern of the Arabidopsis bZIP transcription factor TGA2. Mol Gen Genet, 1996, 250: 237–239

[18]      Katagiri F, Lain E, Chua N H. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 1989, 340: 727–730


[19]      Wang C F, Huang L L, Buchenauer H, Han Q M, Zhang H C, Kang Z S. Histochemical studies on the accumulation of reactive oxygen species (O2– and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol, 2007, 71: 230–239
Kang Z, Huang L, Buchenauer H. Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Prot, 2002, 109: 25–37
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!