作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1221-1225.doi: 10.3724/SP.J.1006.2010.01221
张毅1,夏宁1,张岗1,郭军1,黄丽丽1,康振生1,2,*
ZHANG Yi1,XIA Ning1,ZHANG Gang1,GUO Jun1,HUANG Li-Li1,KANG Zhen-Sheng1,2,*
摘要:
采用电子克隆和RT-PCR方法,从条锈菌诱导的小麦品种水源11的cDNA中分离到一个编码bZIP转录因子基因的cDNA序列,暂被命名为TabZIP。TabZIP包含一个完整的1 071 bp的开放阅读框,编码356个氨基酸,具有典型的bZIP保守结构域;与水稻、玉米、拟南芥等植物bZIP蛋白的氨基酸序列相似性较高;TabZIP基因在小麦根中的表达量丰富,而在茎和叶中表达量很小;在小麦与条锈菌非亲和组合中,TabZIP基因高水平表达,而在亲和组合中没有明显的变化;防卫相关激素乙烯、茉莉酸也可诱导该基因的快速上调表达,表明TabZIP可能通过乙烯、茉莉酸信号途径介导小麦对条锈病的防御反应。
[1] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337 [2] Jia Y-T(贾燕涛). Plant Disease Resistance Signaling Pathways. Chin Bull Bot (植物学通报), 2003, 20(5): 602–608 (in Chinese with English abstract) [3] Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol, 2001, 4: 301–308 [4] Singh K B, Foley R C, Onate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430–436 [5] Jakoby M, Weisshaar B, Droge-Laser W, Tiedemann J, Kroij T, Parcy F. The family of bZIP transcription factors in Arabidopsis thaliana. Trends Plant Sci, 2002, 7: 106–111 [6] Kim S Y, Thomas T L. A family of basic leucine zipper proteins bind to seed-specification elements in the carrot Dc3 gene promoter. J Plant Physiol, 1998, 152: 607–613 [7] Niu X P, Renshaw-Gegg L, Miller L, Guiltinan M J. Bipartite determinants of DNA-binding specificity of plant basic leucine zipper proteins. Plant Mol Biol, 1999, 41: 1–13 [8] Fujita M, Fujiata Y, Noutoshi Y, Takshashi F, Narusaka Y, Yamaguchi-shinozaki K and Shinozaki K. Crosstalk between abiotic and biotic stress response: A current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9: 436–442 [9] Meng X B, Zhao W S, Lin R M, Wang M, Peng Y L. Identification of a novel rice bZIP-Type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea. Plant Mol Biol, 2005, 23: 301–313 [10]Lee S C, Choi H W, Hwang I S, Choi D S, Hwang B K. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006, 224: 1209–1225 [11] Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll (西北农学院学报), 1984, 12(4):18–28 (in Chinese with English abstract) [12]Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834 [13] Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet, 2002, 106: 74–83 [14] The Rice Chromosomes 11 and 12 sequencing Consortia. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol, 2005, 3: 20 [15] Alexandrow N N, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H, Swaller T J, Lu Y P, Bouck J, Flavell R B, Feldmann K A. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol, 2009, 69: 179–194 [16] Zhang Y, Zhang G, Xia N, Wang X J, Huang L L, Kang Z S. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol,2009, 73: 88–94 [17] Pater S, Pham K, Memelink J, Kijne J. Binding specificity and tissue-specific expression pattern of the Arabidopsis bZIP transcription factor TGA2. Mol Gen Genet, 1996, 250: 237–239 [18] Katagiri F, Lain E, Chua N H. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 1989, 340: 727–730 [19] Wang C F, Huang L L, Buchenauer H, Han Q M, Zhang H C, Kang Z S. Histochemical studies on the accumulation of reactive oxygen species (O2– and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol, 2007, 71: 230–239 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[13] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|