欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1216-1220.doi: 10.3724/SP.J.1006.2010.01216

• 研究简报 • 上一篇    下一篇

利用荧光原位杂交技术分析新合成异源四倍体拟南芥

位芳,张改生*   

  1. 西北农林科技大学 / 陕西省作物杂种优势研究与利用重点实验室 / 小麦育种教育部工程研究中心,陕西杨凌 712100
  • 收稿日期:2009-10-26 修回日期:2010-04-21 出版日期:2010-07-12 网络出版日期:2010-05-20
  • 通讯作者: 张改生, E-mail: zhanggsh@public.xa.sn.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2009AA101102),陕西省13115科技创新工程重大科技专项(2007ZDKG-02)和国家杨凌农业生物技术育种中心专项基金项目(99-1A)资助.

FISH Analysis of Resynthesized Allotetraploid Arabidopsis

LI Fang,ZHANG Gai-Sheng   

  1. Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, Northwest A&F University, Yangling 712100, China
  • Received:2009-10-26 Revised:2010-04-21 Published:2010-07-12 Published online:2010-05-20
  • Contact: ZHANG Gai-Sheng, E-mail: zhanggsh@public.xa.sn.cn

摘要:

在植物异源倍化育种中或者通过异源多倍化导入有利基因时,初级杂交后代异源多倍体减数分裂期间,避免部分同源染色体干扰,使同源染色体正常联会和配对以及正确分离是产生功能性雌雄配子的细胞学基础。本研究通过种间杂交技术,获得初级杂交后代异源四倍体拟南芥A. suecica,并重点分析其花粉母细胞减数分裂期同源染色体联会和配对情况。利用DAPI技术染色证明了花粉母细胞减数分裂期间核内染色体数目的正确性和均等分裂;而用荧光原位杂交技术进一步证明了核内染色体组的来源的正确性和同源染色体联会和配对的精准性。该结果证实新合成异源多倍体能进行正常的减数分裂和产生功能性雌雄配子,为种属间杂交和异源多倍体育种以及植物杂种优势利用提供了有利的细胞遗传学证据。

关键词: 拟南芥, 新合成, 异源四倍体, DAPI, 荧光原位杂交

Abstract:

Allopolyploidy breeding or introduction of preferential gene(s) via allopolyploidization is widely attempted in production of new crops. Thus at the onset of establishment of new allopolyploids, the functional gametes are reproduced conditioning that normal events such as synapsis and pairing and correct segregation of homologous chromosomes are guaranteed with the avoidance of possible interference of homoeologous chromosomes during meiosis. In the present study, we reported on meiotic synapsis and pairing of homologous chromosomes during the development of pollen mother cells in the newly resynthesized allotetraploid Arabidopsis aided with DAPI staining and FISH technique. The results showed that the correct number of nuclear chromosomes and balanced segregation were frequently observed with DAPI staining, and FISH analysis further provided the improved resolution of synapsis and pairing of homologous chromosomes, and the investigated nuclear chromosomes derived from different parental lines had no interference with each other, and the synapsis and pairing of homologous chromosomes were clearly identified. Therefore, the results indicated that the newly resynthesized allotetraploid Arabidopsis may achieve the normal meiosis and propagate the functionalized gametes for fertilization, confirming a potential vigor of intra/interspecific hybridization and a cytological basis for allopolyploid breeding.

Key words: Arabidopsis, Allotertraploid, Resynthesized, DAPI, FISH


[1] Levsky J M, Singer R H. Fluorescence in situ hybridization: past, present and future. J Cell Sci, 2003, 116: 2833–2838


[2] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057–1068


[3] Gorman P, Roylance R. Fluorescence in situ hybridization and comparative genomic hybridization. Methods Mol Med, 2006, 120: 269–295


[4] Ali H B, Lysak M A, Schubert I. Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome, 2004, 47: 954–960


[5] Doyle J J, Flagel L E, Paterson A H, Rapp R A, Soltis D E, Soltis P S, Wendel J F. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet, 2008, 42: 443–461


[6] Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 2000, 12: 1551–1568


[7] Schranz M E, Osborn T C. Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered, 2000, 91: 242–246


[8] Madlung A, Tyagi A P, Watson B, Jiang H, Kagochi T, Doerge R W, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids. Plant J, 2005, 41: 221–230


[9] Song K, Lu P, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA, 1995, 92: 7719–7723


[10] Pikaard C S. Genomic change and gene silencing in polyploids. Trends Genet, 2001, 17: 675–677


[11] Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377–406


[12] Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol, 2003, 29: 365–379


[13] Roberts M A, Reader S M, Dalgliesh C, Miller T E, Foote T N, Fish L J, Snape J W, Moore G. Induction and characterization of Ph1 wheat mutants. Genetics, 1999, 153: 1909–1918


[14] Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 2006, 439: 749–752


[15] Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 1149–1155


[16] Wang A-Y(王爱云), Chen D-L(陈冬玲), Cai D-T(蔡得田). Applications of wide hybridization and allopolyploidization in Rice Breeding. J Wuhan Bot Res (武汉植物学研究), 2005, 23(5) : 491–4954 (in Chinese with English abstract)


[17] Stewart C N Jr, Via L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14: 748–50


[18] Ross K J, Fransz P, Jones G H. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res, 1996, 4: 507–516


[19] Armstrong S J, Sanchez-Moran E, Franklin F C. Cytological analysis of Arabidopsis thaliana meiotic chromosomes. Methods Mol Biol, 2009, 558: 131–145


[20] Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836–846


[21] Zhuang Y(庄勇), Chen L-Z(陈龙正), Yang Y-G(杨寅桂), Lou Q-F(娄群峰), Chen J-F(陈劲枫). Changes in gene expression in evolution of plant allopolyploids. Chin Bull Bot (植物学通报), 2006, 23(2): 207–214 (in Chinese with English abstract)


[22] Xiong Z-Y(熊志勇), Gao Y(高原), He G-Y(何光源), Gu M-G(谷明光), Guo L-Q(郭乐群), Song Y-C(宋运淳). Distribution of the knob heterochromatin repeat sequence on chromosome in maize, perennial diploid maize and their offspring. Chin Sci Bull (科学通报), 2004, 12(49): 1162–1165 (in Chinese with English abstract)


[23] Wang J L, Tian L, Lee H S, Wei N E, Jiang H M, Brian W, Andreas M, Osborn T C, Doerge R W, Comai L, Chen Z J. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 2006, 172: 507–517


[24] Beaulieu J, Jean M, Belzile F. The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genom, 2009, 281: 421–435


[25] Moore G. Meiosis in allopolyploids—the importance of ‘Teflon’ chromosomes. Trends Genet, 2002, 18: 456–463
[1] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[2] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[3] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[4] 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808.
[5] 李丽娜,杜培,付留洋,刘华,徐静,秦利,严玫,韩锁义,黄冰艳,董文召. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定[J]. 作物学报, 2017, 43(01): 133-140.
[6] 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478.
[7] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[8] 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716.
[9] 赵青平,赵翔,慕世超,肖慧丽,张骁. 拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定[J]. 作物学报, 2015, 41(04): 585-592.
[10] 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573.
[11] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[12] 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822.
[13] 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351.
[14] 刘江,孙全喜,李新征,亓宝秀. 球等鞭金藻Δ5去饱和酶基因IgD5在拟南芥中的功能鉴定[J]. 作物学报, 2013, 39(05): 928-934.
[15] 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!