作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1216-1220.doi: 10.3724/SP.J.1006.2010.01216
位芳,张改生*
LI Fang,ZHANG Gai-Sheng
摘要:
[1] Levsky J M, Singer R H. Fluorescence in situ hybridization: past, present and future. J Cell Sci, 2003, 116: 2833–2838 [2] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057–1068 [3] Gorman P, Roylance R. Fluorescence in situ hybridization and comparative genomic hybridization. Methods Mol Med, 2006, 120: 269–295 [4] Ali H B, Lysak M A, Schubert I. Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome, 2004, 47: 954–960 [5] Doyle J J, Flagel L E, Paterson A H, Rapp R A, Soltis D E, Soltis P S, Wendel J F. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet, 2008, 42: 443–461 [6] Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 2000, 12: 1551–1568 [7] Schranz M E, Osborn T C. Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered, 2000, 91: 242–246 [8] Madlung A, Tyagi A P, Watson B, Jiang H, Kagochi T, Doerge R W, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids. Plant J, 2005, 41: 221–230 [9] Song K, Lu P, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA, 1995, 92: 7719–7723 [10] Pikaard C S. Genomic change and gene silencing in polyploids. Trends Genet, 2001, 17: 675–677 [11] Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol, 2007, 58: 377–406 [12] Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol, 2003, 29: 365–379 [13] Roberts M A, Reader S M, Dalgliesh C, Miller T E, Foote T N, Fish L J, Snape J W, Moore G. Induction and characterization of Ph1 wheat mutants. Genetics, 1999, 153: 1909–1918 [14] Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 2006, 439: 749–752 [15] Comai L, Madlung A, Josefsson C, Tyagi A. Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids. Philos Trans R Soc Lond B Biol Sci, 2003, 358: 1149–1155 [16] Wang A-Y(王爱云), Chen D-L(陈冬玲), Cai D-T(蔡得田). Applications of wide hybridization and allopolyploidization in Rice Breeding. J Wuhan Bot Res (武汉植物学研究), 2005, 23(5) : 491–4954 (in Chinese with English abstract) [17] Stewart C N Jr, Via L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14: 748–50 [18] Ross K J, Fransz P, Jones G H. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res, 1996, 4: 507–516 [19] Armstrong S J, Sanchez-Moran E, Franklin F C. Cytological analysis of Arabidopsis thaliana meiotic chromosomes. Methods Mol Biol, 2009, 558: 131–145 [20] Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet, 2005, 6: 836–846 [21] Zhuang Y(庄勇), Chen L-Z(陈龙正), Yang Y-G(杨寅桂), Lou Q-F(娄群峰), Chen J-F(陈劲枫). Changes in gene expression in evolution of plant allopolyploids. Chin Bull Bot (植物学通报), 2006, 23(2): 207–214 (in Chinese with English abstract) [22] Xiong Z-Y(熊志勇), Gao Y(高原), He G-Y(何光源), Gu M-G(谷明光), Guo L-Q(郭乐群), Song Y-C(宋运淳). Distribution of the knob heterochromatin repeat sequence on chromosome in maize, perennial diploid maize and their offspring. Chin Sci Bull (科学通报), 2004, 12(49): 1162–1165 (in Chinese with English abstract) [23] Wang J L, Tian L, Lee H S, Wei N E, Jiang H M, Brian W, Andreas M, Osborn T C, Doerge R W, Comai L, Chen Z J. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 2006, 172: 507–517 [24] Beaulieu J, Jean M, Belzile F. The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genom, 2009, 281: 421–435 [25] Moore G. Meiosis in allopolyploids—the importance of ‘Teflon’ chromosomes. Trends Genet, 2002, 18: 456–463 |
[1] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[2] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[3] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[4] | 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808. |
[5] | 李丽娜,杜培,付留洋,刘华,徐静,秦利,严玫,韩锁义,黄冰艳,董文召. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定[J]. 作物学报, 2017, 43(01): 133-140. |
[6] | 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478. |
[7] | 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695. |
[8] | 宋仲戬,张登峰*,李永祥,石云素,宋燕春,王天宇,黎裕. 玉米分子伴侣基因ZmBiP2在逆境下的功能分析[J]. 作物学报, 2015, 41(05): 708-716. |
[9] | 赵青平,赵翔,慕世超,肖慧丽,张骁. 拟南芥下胚轴向光弯曲P2SA2基因的克隆与功能鉴定[J]. 作物学报, 2015, 41(04): 585-592. |
[10] | 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573. |
[11] | 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578. |
[12] | 张高阳,祁建民,徐建堂,牛小平,张雨佳,张立武,陶爱芬,方平平,林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆、反义载体构建及转化拟南芥[J]. 作物学报, 2014, 40(05): 816-822. |
[13] | 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351. |
[14] | 刘江,孙全喜,李新征,亓宝秀. 球等鞭金藻Δ5去饱和酶基因IgD5在拟南芥中的功能鉴定[J]. 作物学报, 2013, 39(05): 928-934. |
[15] | 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569. |
|