欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 355-361.doi: 10.3724/SP.J.1006.2011.00355

• 耕作栽培·生理生化 • 上一篇    下一篇

三个超高产夏玉米品种的物质生产及光合特性

杨今胜1,2,王永军2,3,张吉旺1,刘鹏1,李从锋1,朱元刚1,郝梦波1,柳京国2,李登海2,*,董树亭1,*   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室,山东泰安 271018;2山东登海种业股份有限公司 / 山东省玉米育种与栽培技术重点实验室,山东莱州 261448;3吉林省农业科学院环资中心,吉林长春 130033
  • 收稿日期:2010-03-25 修回日期:2010-08-06 出版日期:2011-02-12 网络出版日期:2010-11-16
  • 基金资助:

    本研究由国家科技支撑计划项目(2007BAD31B04), 山东省泰山学者岗位(ts200648033)和山东省良种产业化项目(2008-7)资助。

Dry Matter Production and Photosynthesis Characteristics of Three Hybrids of Maize (Zea mays L.) with Super-High-Yielding Potential

YANG Jin-Sheng1,2,WANG Yong-Jun2,3,ZHANG Ji-Wang1,LIU Peng1,LI Cong-Feng1,ZHU Yuan-Gang1,HAO Meng-Bo1,LI Deng-Hai2,*,DONG Shu-Ting1,*   

  1. 1 State Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; 2 Shandong Denghai Seed-breeding Co. Ltd. / Key Laboratory of Maize Breeding and Culture of Shandong Province, Laizhou 261448, China; 3 Research Center of Agricultural Environment and Resources, Jilin Academy of Agriculture Science, Changchun 130033, China
  • Received:2010-03-25 Revised:2010-08-06 Published:2011-02-12 Published online:2010-11-16

摘要: 探明不同株高、穗位高具有超高产潜力(>15 000 kg hm-2)夏玉米品种的物质生产及光合特性,有利于密植增产。本研究在多年高产试验基础上(连续3年达15 000 kg hm-2以上),选用了登海661 (DH661,低秆低穗位)、登海701(DH701,中秆中穗位)和先玉335 (XY335,高秆高穗位) 3个具有超高产潜力的品种进行试验。在一般高产条件下,这3个品种间产量无显著差异,但干物质生产特性的模型解析表明,DH661的产量潜力高于DH701和XY335,其活跃生长期比XY335长近3周。开花后光合特征参数显示,DH661光合作用与光能利用效率明显较高,尤其是当XY335进入生理功能速衰期时(开花后28 d),DH661仍处于缓慢下降阶段,且具有较高的光合速率和光能利用效率,DH661的这一特性表明其具有更高的产量潜力。

关键词: 超高产夏玉米, 株高, 穗位高, 物质生产, 光合特性

Abstract: The plant height and ear height are the important factors affecting the grain yield in maize (Zea mays L.) which determined the planting density. Obviously, it is essential for high yield to explore the dry matter production and photosynthesis characteristics of super-high-yielding potential hybrid maize with different plant heights and ear heights. Therefore, a field experiment with 82 500 plant ha-1 was conducted to evaluate the three hybrids (Denghai 661, DH661, the low-plant height and low-ear height; Denghai 701, DH701, the medium-plant height and medium-ear height; Xianyu 335, XY335, the high-plant height and high-ear height). The biomass, leaf area index (LAI), potential photosynthetic capacity (LAD), gas exchange parameters (light-saturated photosynthetic rate-Psat, stomatal conductance-gs and intercellular CO2 concentration-Ci) and chlorophyll fluorescence parameters (maximal efficiency of PS2 photochemistry-Fv/Fm, PS2 efficiency-ΦPSII and photochemical quenching co-efficient-qP) were determined. Yields of the three-type hybrids were over-15 000 kg ha-1, but there were no significant differences among the three hybrids under conventional planting conditions. The results analyzed by Richards model showed that DH661 had the highest yield potential among the three hybrids because its active growth period was about three weeks longer than that of XY335. The yield potential of DH661 was remarkably high from 28 d after anthesis to harvest stage since it remained the higher photosynthesis capability and radiation utilization efficiency, but that of XY335 decreased rapidly.

Key words: Super-high-yielding summer maize (Zea mays L.), Plant height and ear height, Dry matter production, Photosynthesis characteristics

[1]Li D-H(李登海). A review and prospect of erectophile maize breeding. J Laiyang Agric Coll (莱阳农学院学报), 2001, 18(1): 1–6 (in Chinese)
[2]Li D-H(李登海), Mao L-H(毛丽华), Jiang W-J(姜伟娟), Liu J-G(柳京国), Li C-M(李春明). Researches on high-yielding performances of erectophile maize hybrids. J Laiyang Agric Coll (莱阳农学院学报), 2001, 18(4): 259–262 (in Chinese)
[3]Mock J J, Pearce R B. An ideotype of maize. Euphytica, 1975, 24: 613–623
[4]Yu H-F(于洪飞), Dai J-Y(戴俊英), Shen X-Y(沈秀瑛), Zhang L(张烈). Progress of maize ideotype breeding based on eco-physiology. J Maize Sci (玉米科学), 1995, 3(1): 12–17 (in Chinese)
[5]Winter S R, Ohlrogg A J. Leaf angle, leaf area, and corn (Zea mays L.) yield. Agron J, 1973, 65: 395–397
[6]Xu Q-Z(徐庆章), Wang Q-C(王庆成), Niu Y-Z(牛玉贞), Wang Z-X(王忠孝), Zhang J(张军). Studies on relation between plant type and canopy photosynthesis in maize. Acta Agron Sin (作物学报), 1995, 21 (4): 492–496 (in Chinese with English abstract)
[7]Wang Q-C(王庆成), Niu Y-Z(牛玉贞), Xu Q-Z(徐庆章), Wang Z-X(王忠孝), Zhang J(张军). Effect of plant-type on rate of canopy apparent photosynthesis and yield in maize (Zea mays L.). Acta Agron Sin (作物学报), 1996, 22 (2): 223–227 (in Chinese with English abstract)
[8]Li Z-Z(李自珍), Zhao S-L(赵松岭), Zhang P-Y(张鹏云). The niche-fitness theory and its application to the systems of crop growth. J Lanzhou Univ (Nat Sci Edn) (兰州大学学报·自然科学版), 1993, 29(4): 219–224 (in Chinese with English abstract)
[9]Li Z-Z(李自珍), Li W-L(李文龙). The effect of water-fertilizer conditions on crop’s niche-fitness and yield in semi-arid regions of the Loess Plateau. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(1): 28–33 (in Chinese with English abstract)
[10]Li J(李娎), Zhu J-Z(朱金兆), Zhu Q-K(朱清科). A review on niche theory and niche metrics. J Beijing For Univ (北京林业大学学报), 2003, 25(1): 100–107 (in Chinese with English abstract)
[11]Duvick D N. Heterosis: feeding people and protecting natural resources. In: Coors J G, Pandey S, eds. Genetics and Exploitation of Heterosis in Crops. Wisconsin: Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Inc, 1999. pp 19–29
[12]Gardner F P, Pearce R B, Mitchell R L. Photosynthesis. In: Physiology of Crop Plant. Ames: Iowa State University Press, 1985. pp 3–30
[13]Fageria N K, Baligar V C, Clark R B. Physiology of Crop Production. Food Products Press. An Imprint of the Haworth Press, Inc. New York, London, Oxford, 2005. pp 72–82
[14]Russell W A. Evaluations for plant, ear, and grain traits of maize cultivars representing seven years of breeding. Maydica, 1985, 30: 85–96
[15]Fischer K S, Johnson E C, Edmeades G O. Breeding and Selection for Drought Resistance in Tropical Maize. CIMMYT, El Batan, Mexico, 1983. pp 3796–399
[16]Chapman S C, Edmeades G O. Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Sci, 1999, 39: 1315–1324
[17]Ling Q-H(凌启鸿). Crops Population Quality (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 7–12 (in Chinese)
[18]Tan H-P(谭禾平), Wang G-Y(王桂跃), Hu X-N(胡贤女), Xu Q-X(许巧贤). Multiple regression and path analysis of effective factors affecting maize yield. Acta Agric Zhejiangensis (浙江农业学报), 2006, 18 (4): 238–240 (in Chinese with English abstract)
[19]Pereira M G, Lee M. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet, 1995, 90: 380–388
[20]Zhang Z-M(张泽民), Jia C-Z(贾长柱). Effects of plant-type on genetic gain in maize. Heredita (遗传), 1997, 19(2): 31–34 (in Chinese with English abstract)
[21]Yang L-H(杨利华), Zhang L-H(张丽华), Yang S-L(杨世丽), Ma R-K(马瑞昆), Zhang Q-G(张全国). Responses of some population quality indices of corn hybrids differing in plant height to planting density. Acta Agric Boreal-Sin (华北农学报), 2007, 22(6): 139–146 (in Chinese with English abstract)
[22]Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王洪军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic traits of over-15000 kg ha-1 summer maize hybrids during grain filling. Sci Agric Sin (中国农业科学), 2007, 40(9): 1898–1906 (in Chinese with English abstract)
[23]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth analysis on the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182–193 (in Chinese with English abstract)
[24]Gu S-L(顾世梁), Zhu Q-S(朱庆森), Yang J-C(杨建昌), Peng S-B(彭少兵). Analysis on grain filling characteristics for different rice types. Acta Agron Sin (作物学报), 2001, 27(1): 7–14 (in Chinese with English abstract)
[25]Zhao H-J(赵会杰), Li Y(李有), Zou Q(邹琦). A comparative study on characteristics of radiation and photosynthesis in canopy of two different spike- type cultivars of wheat. Acta Agron Sin (作物学报), 2002, 28(5): 654–659 (in Chinese with English abstract)
[26]Demmig-Adams B, Adams W W III. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264
[27]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87–92
[28]Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Sun Q-Q(孙庆泉). Studies on development rule for growth characteristics of maize varieties from different eras in China I. The development of grain yield characteristics. J Maize Sci (玉米科学), 1998, 6(2): 44–48 (in Chinese)
[29]Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different areas to changes in plant density. Field Crops Res, 2002, 79: 39–51
[30]Sangoi L, Salvador R J. Effect of maize plant detasseling on grain yield, tolerance to high plant density and drought stress. Pesquisa Agropecuária Brasileira, 1998, 33: 677–684
[31]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1579–1604
[32]Duncan W G. Physiological Aspects of Crop Yield: Cultural manipulation for higher yields. In: Eastin J D, Haskins F A, Sullivan C Y, Van Bavel C H M, Dinauer R C, eds. Madison, Wisconsin: American Society of Agronomy & Crop Science Society of America, 1969. pp 327–342
[33]Williams W A, Loomis R S, Duncan W G, Dovrat A, Nunez F. Canopy architecture at various population densities and the growth and grain yield of corn. Crop Sci, 1968, 8: 303–308
[34]Zhao M(赵明), Li J-G(李建国), Zhang B(张宾), Dong Z-Q(董志强), Wang M-Y(王美云). The compensatory mechanism in exploring crop production potential. Acta Agron Sin (作物学报), 2006, 32(10): 1566–1573 (in Chinese with English abstract)
[35]Paponov I A, Sambo P, Schulte auf?m Erley G, Prester T, Geiger H H, Engels C. Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil, 2005, 272: 111–123
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[8] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[9] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[10] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[11] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953-1965.
[12] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[13] 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455.
[14] 姜朋,何漪,张旭,吴磊,张平平,马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析[J]. 作物学报, 2020, 46(6): 858-868.
[15] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!