欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 280-285.doi: 10.3724/SP.J.1006.2011.00280

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻多小花小穗突变体mf1的鉴定与基因定位

李云峰,杨正林,凌英华,王楠,任德勇,王增,何光华*   

  1. 西南大学水稻研究所 / 农业部生物技术与作物品质改良重点实验室,重庆 400716
  • 收稿日期:2010-07-08 修回日期:2010-10-05 出版日期:2011-02-12 网络出版日期:2010-12-15
  • 通讯作者: 何光华, E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究受国家高技术研究发展计划(863计划) (2006AA10Z167), 国家自然科学基金项目(30971559)和重庆市杰出青年基金(2008BA1033)的资助。

Characterization and Gene Mapping of a Spikelet Mutant multi-floret 1(mf1) in Rice

LI Yun-Feng,YANG Zheng-Lin,LING Ying-Hua,WANG Nan,REN De-Yong,WANG Zeng,HE Guang- Hua*   

  1. Rice Research Institute, Southwest University / Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture, Chongqing 400716, China
  • Received:2010-07-08 Revised:2010-10-05 Published:2011-02-12 Published online:2010-12-15
  • Contact: 何光华, E-mail: hegh@swu.edu.cn

摘要: 水稻小穗具确定性,一个小穗内只包含一个可育的小花。本文报道一个多小花小穗突变体,其一个小穗内出现两朵及以上小花,暗示小穗分生组织确定性的丢失;另外,这些小花的花器官也表现不正常,包括外稃的伸长、浆片的缺失和雄蕊的减少。遗传分析表明该突变性状受1个隐性单基因控制,暂被命名为multi-floret 1 (mf1)。利用群体分离分析法(bulked segregation analysis, BSA),MF1基因被定位在第3染色体上SSR标记PSSR3和RM7576之间,物理距离大约为34 kb,包含4个候选基因。研究结果为MF1基因的图位克隆和功能研究奠定了基础。

关键词: 水稻, 小穗, 多小花, 确定性

Abstract:  Rice has a determinate spikelet producing a fertile floret above two sterile lemmas. In this study, we reported a multi-floret 1 (mf1) mutant, in which spikelet lost the determinacy and produced two or more florets in an alternate phyllotaxy above sterile lemmas. In addition, all the florets showed the defects of floral organs development, such as the elongated leafy lemma, and decreased lodicule/stamen. Genetic analysis indicated that the mf1 trait is controlled by a single recessive gene. By bulked segregation analysis (BSA) and rice SSR molecular maker, the mf1 locus was located between PSSR3 and RM7576 on chromosome 3 with a 34 kb physical distance containing four annotated genes. This result provided a foundation of map-based cloning and function analysis of MF1 gene.

Key words: Rice, Spikelet, multi floret 1, Determinacy

[1]Coen E S, Meyerowitz E M. The war of the whorls genetic interactions controlling flower development. Nature, 1991, 353: 31–37
[2]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203–209
[3]Jack T. Molecular and genetic mechanisms of floral control. Plant Cell, 2004, 16: 1–17
[4]Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1, DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718
[5]Whipple C J, Ciceri P, Padilla C M, Ambrose B A, Bandong S L, Schmidt R J. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development, 2004, 131: 6083–6091
[6]Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28
[7]Clifford H T. Spikelet and floral morphology. In: Soderstrom T R, Hilu K W, Campbell C S, Barkworth M E, eds. Grass Systematics and Evolution. Smithsonian Institution Press, Washington DC, 1987. pp 21–30
[8]Malcomber S T, Preston J C, Reinheimer R, Kossuth J, Kellogg E A. Developmental gene evolution and the origin of grass inflorescence diversity In: Leebens-Mack J, Soltis D E, Soltis P S, eds. Developmental Genetics of the Flower. Academic Press, New York, 2006. pp 383–421
[9]Lee D Y, Lee J, Moon S, Park S Y, An G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J, 2007, 49: 64–78
[10]Chuck G, Meeley R B, Hake, S. The control of maize spikelet meristem fate by the APETELA2-like gene indeterminate spikelet1. Genes Dev, 1998, 12: 1145–1154
[11]Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130: 3841–3850
[12]Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298: 1238–1241
[13]Xiao H, Tang J F, Li Y F, Wang W M, Li X B, Jin L, Xie R, Luo H F, Zhao X F, Meng Z, He G H, Zhu L H. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59: 789–801
[14]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[15]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325
[16]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing)(遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)
[17]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 259: 297–607
[18]Krizek B A, Fletcher J C. Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet, 2005, 6: 688–698
[19]Sentoku N, Kato H, Kitano H, Imai R. OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. Mol Genet Genomics, 2005, 273: 1–9
[20]Luo Q, Zhou K, Zhao X, Zheng Q, Xia H W, Xu J, Wu X, Yang H, Zhu L. Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta, 2005, 221: 222–230
[21]Pozzi C, Faccioli P, Terzi V, Stanca A M, Cerioli S, Castiglioni P, Fink R, Capone R, Müller K J, Bossinger G, Rohde W, Salamini F. Genetics of mutations affecting the development of a barley floral bract. Genetics, 2000, 154: 1335–1346
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!