欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 579-586.doi: 10.3724/SP.J.1006.2011.00579

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用酵母双杂交法检测甘蓝SCR与SRK之间的相互作用

罗兵1,3,薛丽琰1,**,朱利泉1,*,张贺翠1,彭一波1,陈松1,杨红1,杨昆1,李成琼2,王小佳2,*   

  1. 1 西南大学植物生理生物化学实验室, 重庆400716; 2 西南大学重庆市蔬菜学重点实验室, 重庆400716;3常熟理工学院生物与食品工程学院,常熟 215500
  • 收稿日期:2010-09-17 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 朱利泉, E-mail: zhuliquan@swu.edu.cn, Tel: 023-68250794, Fax:023-68251914; 王小佳, E-mail: wxj@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971849)资助。

Detection of Interactions between SCR and SRK in Brassica oleracea L. by Yeast Two-Hybrid System

LUO Bing1,3,XUE Li-Yan1,**,ZHU Li-Quan1,*,ZHANG He-Cui1,PENG Yi-Bo1,CHEN Song1,YANG Hong1,YANG Kun1,LI Cheng-Qiong2,WANG Xiao-Jia2,*   

  1. 1 Plant Physiology and Biochemistry Laboratory of Southwest University, Chongqing 400716, China; 2 Key Laboratory in Olericulture of Chongqing, Southwest University, Chongqing 400716, China; 3 College of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
  • Received:2010-09-17 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 朱利泉, E-mail: zhuliquan@swu.edu.cn, Tel: 023-68250794, Fax:023-68251914; 王小佳, E-mail: wxj@swu.edu.cn

摘要: 为深入研究甘蓝S位点受体激酶(SRK)和S位点富含半胱氨酸蛋白(SCR)间相互识别的分子机理,以具有典型自交不亲和性的甘蓝D3为材料,利用巢式PCR分别扩增SRK胞外域(eSRK)和SCR,通过酵母双杂交检测二者之间的相互作用。并利用同源重组技术将eSRK与GAL4报告基因DNA活化域融合(pGADT7eSRK)以及SCR与GAL4报告基因DNA结合域融合(pGBKT7SCR)。两种重组质粒分别转化酵母Y187和Y2HGold后未出现自激活现象。融合的二倍体酵母(pGADT7eSRK× pGBKT7SCR)能在选择性固体培养基(SD/–Ade/–His/–Leu/–Trp/X-a-Gal/AbA)上生长,并且菌落呈蓝色。结果表明, eSRK与SCR蛋白能够相互结合, 为深入研究二者作用位点成功建立了一个技术平台。

关键词: 甘蓝, S位点受体激酶(SRK), S位点富含半胱氨酸蛋白(SCR), 酵母双杂交

Abstract: For further study on mechanism of the mutual recognition between S-locus receptor kinase (SRK) and S-locus Cysteine-rich protein (SCR) in Brassica, the extracellular domains of SRK (named as eSRK) and SCR were amplified by nested PCR using Brassica oleracea L. ‘D3’ with the trait of typical self-incompatibility (SI), and the interactions between eSRK and SCR was detected by the yeast two-hybrid system. Then the full-length eSRK and the SCR were fused to the Gal4 DNA activation domain (designated pGADT7eSRK) and the Gal4 DNA binding domain (designated pGBKT7SCR) by the gene homologous recombination technique respectively. Then the pGADT7eSRK plasmid and the pGBKT7SCR were transformed into the Y187 yeast strain and the Y2HGold yeast strain respectively. The two transformed yeast strains did not exhibit autoactivation. The diploids, which were fused by the transformed Y2HGold yeast strain and the transformed Y187 yeast strain, grew on selective agar plates (SD/–Ade/–His/– Leu/–Trp/X-a-Gal/AbA), and the resulting colonies were blue, which strongly indicated that eSRK and SCR could combine with each other.

Key words: Brassica oleracea L., Self-incompatibility, S-locus receptor kinase (SRK), S-locus cysteine-rich protein (SCR), Yeast two-hybrid system

[1]Bateman A J. Self-incompatibility systems in angiosperms: III. Cruciferae Hered, 1955, 9: 53–68
[2]Wheeler M J, Graaf B H J, Hadjiosif N, Perry R M, Poulter N S, Osman K. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature, 2009, 459: 992–995
[3]Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incomaptibility locus of Brassica oleracea. Proc Natl Acad Sci USA, 1991, 88: 8816–8820
[4]Takayama S, Shimosato H, Shiba H, Funato M, Che F S, Watanabe M, Iwano M, Isogai A. Direct ligand–receptor complex interaction controls Brassica self-incompatibility. Nature, 2001, 413: 534–538
[5]Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self-incompatibility in Brassica. Science, 1999, 286: 1697–1700
[6]Suzuki G, Kai N, Hirose T, Nishio T, Takayama S, Isogai A, Watanabe M, Hinata K. Genomic organization of the S locus: identification and characterization of genes in SLG/SRK region of S9 haplotype of Brassica campestris (syn. rapa). Genetics, 1999, 153: 391–400
[7]Nasrallah J B, Yu S M, Nasrallah M E. Self-incompatibility genes of Brassica oleracea: expression, isolation and structure. Proc Nat Acad Sci USA, 1988, 85: 5551–5555
[8]Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, Nakagawa T, Che F S, Suzuki G, Watanabe M, Hinata K, Isogai A. A pollen coat protein, SP11/SCR, determines the pollen S-specificity in the self-incompatibility of Brassica species. Plant Physiol, 2001, 125: 2095–2103
[9]Rong X-Y(荣小营), Zhu Li-Q(朱利泉), Wang Y(王永), Gao Q-G(高启国), Chen X-D(陈晓丹), Yang Y(杨洋), Wang X-J(王小佳). Localization of MLPK and SSP genes for self-incompatibility of Brassica oleracea by fluorescence in situ hybridization. Acta Agron Sin (作物学报), 2009, 35(5): 802–808 (in Chinese with English abstract)
[10]Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403: 913–916
[11]Gao Q-G(高启国), Song M(宋明), Niu Y(牛义), Yang K(杨昆), Zhu L-Q(朱利泉), Wang X-J(王小佳). Test of interaction between THL1 and SRK from Brassica oleracea L. in self-incompatibility signaling process. Acta Agron Sin (作物学报), 2008, 34(6): 1–10 (in Chinese with English abstract)
[12]Nasrallah J B, Nasrallah M E. Pollen-stigma signaling in the sporophytic self-incompatibility response. Plant Cell, 1993, 5: 1325–1335
[13]Kachroo A, Schopfer C R, Nasrallah M E, Nasrallah J B. Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science, 2001, 293: 1824–1826
[14]Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che F S, Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell, 2007, 19: 107–117
[15]Higashiyama T. Peptide Signaling in Pollen–Pistil Interactions. Plant Cell Physiol, 2010, 51: 177–189
[16]Oender K, Niedermayr P, Hintner H, Richter K, Koller L, Trost A, Bauer J W, Hundsberger H. Relative quantitation of protein–protein interaction strength within the yeast two-hybrid system via fluorescence β-galactosidase activity detection in a high-throughput and low-cost manner. ASSAY Drug Dev Technol, 2006, 4: 709–719
[17]Bower M S, Matias D D, Fernandes C E, Mazzurco M, Gu T, Rothstein S, Goring D R. Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase. Plant Cell, 1996, 8: 1641–1650
[18]Gu T, Mazzurco M, Matias D D, Sulaman W, Goring D R. Binding of a novel arm repeat protein to the kinase domain of the S locus receptor kinase. Proc Natl Acad Sci USA, 1998, 95: 382–387
[19]Mazzurco M, Sulaman W, Helen E, Cock J M, Goring D R. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Mol Biol, 2001, 45: 365–376
[20]Naithani S, Chookajorn T, Ripoll D R, Nasrallah J B. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA, 2007, 104: 12211–12216
[21]Nishio T, Kusaba M, Sakamoto K, Ockendon D J. Polymorphism of the kinase domain of the S-locus receptor kinase gene (SRK) in Brassica oleracea L. Theor Appl Genet, 1997, 95: 335–342
[22]Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyam K, Hinata K, Suzuki G, Takasaki T, SattaY, Shiba H, Takayama S, Isogai A. Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett, 2000, 473: 139–144
[23]Nasrallah M E, Liu P, Broyles S S, Boggs N A, Nasrallah J B. Natural variation in expression of self-incompatibility in Arabidopsis thaliana: Implications for the evolution of selfing. Proc Natl Acad Sci USA, 2004, 101: 16070–16074
[24]Kemp B P, Doughty J. S cysteine-rich (SCR) binding domain analysis of the Brassica self-incompatibility S-locus receptor kinase. New Phytol, 2007, 175: 619–629
[25]Fujimoto R, Sugimura T, Nishio T. Gene conversion from SLG to SRK resulting in self-compatibility in Brassica rapa. FEBS Lett, 2006, 580: 425–430
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!