欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 820-831.doi: 10.3724/SP.J.1006.2011.00820

• 耕作栽培·生理生化 • 上一篇    下一篇

高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异

周伟辉1,薛大伟2,张国平1,*   

  1. 1浙江大学农业与生物技术学院,浙江杭州 310029;2杭州师范大学生命与环境科学学院,浙江杭州 310036
  • 收稿日期:2010-10-22 修回日期:2011-01-06 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 通讯作者: 张国平, E-mail: zhanggp@zju.edu.cn
  • 基金资助:

    本研究由浙江省科学技术厅项目(2008C22069)资助。

Protein Response of Rice Leaves to High Temperature Stress and Its Difference of Genotypes at Different Growth Stage

ZHOU Wei-Hui1,XUE Da-Wei2,ZHANG Guo-Ping1,*   

  1. 1 Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029, China; 2 College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, China
  • Received:2010-10-22 Revised:2011-01-06 Published:2011-05-12 Published online:2011-03-24
  • Contact: 张国平, E-mail: zhanggp@zju.edu.cn

摘要: 高温已经成为水稻产量的主要限制因素,且其影响由于全球温室效应的加剧而呈扩大趋势。本研究在鉴定耐热水稻基因型的基础上,从生理学和蛋白质组学上进行耐性机理研究。结果表明,苗期或抽穗期高温处理导致结实率、SPAD值、株高、根长和生物量下降,丙二醛、过氧化氢、超氧阴离子含量增加和超氧化物歧化酶活性提高。同时,高温胁迫对热敏感品种明恢63的影响大于对耐热品种密阳46的影响。蛋白质组学分析表明,高温使光合作用相关蛋白、能量类蛋白、代谢类蛋白表达量下降,抗逆相关蛋白表达量上升。另外,蛋白试验结果佐证了密阳46的耐热性以及水稻抽穗期对高温的敏感性。本研究还首次发现抗逆相关蛋白2-cys过氧化物酶BAS1的表达量在高温下上升。

关键词: 水稻, 高温, 耐热性, 基因型, 蛋白质组学

Abstract: High temperature has become a major disastrous factor affecting rice productivity, and the temperature stress becomes more severe due to the global warming effect. The present study was carried out to identify the rice genotypes with high heat tolerance and understand the tolerant mechanisms of both physiology and proteomics. The results showed that seed setting rate, SPAD value, plant height, root length and biomass were dramatically reduced under high temperature, while contents of malondialdehyde, hydrogen peroxide and superoxide anions, and activity of superoxide dismutase were greatly increased, irrespectively of growth stage. Moreover, Minghui 63 (a heat-sensitive genotype) was much more affected by heat stress than Milyang 46 (a heat-tolerant genotype). Proteomic analysis showed that high temperature resulted in down-regulation of the proteins related to photosynthesis, energy and metabolism, while resistance-related proteins were up-regulated. The results also confirmed the heat tolerance of Milyang 46 and the heat sensitivity of the rice plants at heading stage. The up-regulation of anti-stress protein, 2-cys peroxiredoxin BAS1, under heat stress was first reported in this study.

Key words: Rice, High temperature, Thermo-tolerance, Genotype, Proteomics

[1]Wilkins M R, Williams K L, Appel R D, Hochstrasser D F. Proteome Research, New Frontiers in Functional Genomics. Berlin: Springer, 1997. pp 304-331
[2]Süle A, Vanrobaeys F, Hajós G, Van Beeumen J, Devreese B. Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry, 2004, 65: 1853-1863
[3]Xu C P, Huang B R. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot, 2008, 59: 4183-4194
[4]Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 2006, 5: 484-496
[5]Pinheiro C, Kehr J, Ricardo C P. Effects of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta, 2005, 221: 716-728
[6]Wang S B, Chen F, Sommerfeld M, Hu Q. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta, 2004, 220: 17-29
[7]Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235-244
[8]Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Grassi F, Agradi E. Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere, 2006, 62: 1234-1244
[9]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomics analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131-1145
[10]Imin N, Kerim T, Weinman J J, Rolfe B G. Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics, 2001, 1: 1149-1161
[11]Salekdeh G H, Siopongco J, Wade L J, Ghareyazieb B, Bennett J. A proteomics approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res, 2002, 76: 199-219
[12]Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2002, 2: 947-959
[13]Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics, 2003, 3: 527-535
[14]Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971-9975
[15]Grover A, Chandramouli A, Agarwal S, Katiyar-Agarwal S, Agarwal M, Sahi C. Transgenic rice for tolerance against abiotic stresses. In: Datta S K ed. Rice Improvement in the Genomic Era. USA: Hawarth Press, 2009. pp 237-267
[16]Lee D G, Ahsan N, Lee S, Kang K Y, Bahk J D, Lee I, Lee B. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 2007, 7: 3369-3383
[17]Han F, Chen H, Li X J, Yang M F, Liu G S, Shen S H. A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta, 2009, 1794: 1625-1634
[18]Satake T, Yoshida S. High temperature induced sterility in indica rices at flowering. Jpn J Crop Sci, 1978, 47: 6-17
[19]Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot, 2010, 61: 143-156
[20]Lin S K, Chang M C, Tsai Y C, Lur H S. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005, 5: 2140-2156
[21]Yoshida S, Forna D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 62-63
[22]Xu C-C(许长成), Zhao S-J(赵世杰), Zou Q(邹琦). Interference factors of thiobarbituric acid determination in plant membrane lipid peroxidation. Plant Physiol Commun (植物生理学通讯), 1993, 29(5): 361-363 (in Chinese)
[23]Ruan H-H(阮海华), Shen W-B(沈文飚), Ye M-B(叶茂炳), Xu L-L(徐朗莱). Effects of nitric oxide on oxidative injury in wheat leaves under salt stress. Chin Sci Bull(科学通报), 2001, 46(23): 1993-1997 (in Chinese)
[24]Lin C C, Kao C H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci, 2001, 160: 323-329
[25]Li J Y, Jiang A L, Zhang W. Salt stress-induced programmed cell death in rice root tip cells. J Integr Plant Biol, 2007, 49: 481-486
[26]Wang J-Y(王经源), Chen S-Y(陈舒奕), Liang Y-Y(梁义元), Lin W-X(林文雄). Improvement of ISO-DALT electrophoresis system. J Fujian Agric & For Univ (福建农林大学学报), 2006, 35(2): 187-190 (in Chinese with English abstract)
[27]Yu C-L(余初浪), Yan S-P(严顺平), Sun W-N(孙卫宁), Yang L(杨玲). High-resolution two-dimensional electrophoresis for total proteins in rice roots, leaves and suspension cells. Chin J Rice Sci (中国水稻科学), 2006, 20(5):549-552 (in Chinese with English abstract)
[28]Yan J X, Wait R, Berkelman T, Harry R A, Westbrook J A, Wheeler C H, Dunn M J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass pectrometry. Electrophoresis, 2000, 21: 3666-3672
[29]Neuhoff V,Arnold N,Taube D,Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 1988, 9: 255-262
[30]Makino A, Mae T, Ohira K. Photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Planta, 1985, 166: 414-420
[31]Bose A, Ghosh B. Effect of heat stress on ribulose 1,5-bisphosphate carboxylase in rice. Phytochemistry, 1995, 38: 1115-1118
[32]Hankamer B,Barber J,Boekema F J.Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 64l-671
[33]James B. Crystal structure of the oxygen-evolving complex of photosystem II. Inorg Chem, 2008, 47: 1700-1710
[34]Ahsan N, Lee D G, Lee K W, Alam I, Lee S H, Bahk J D, Lee B H. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem, 2008, 46: 1062-1070
[35]Ahsan N, Lee D G, Lee S H, Kang K Y, Bahk J D, Choi M S, Lee I J, Renaut J, Lee B H. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant, 2007, 131: 555-570
[36]Wang Z Y, Freire E, McCarty R E. Influence of nucleotide binding site occupancy on the thermal stability of the F1 portion of the chloroplast ATP synthase. J Biol Chem, 1993, 268: 20785-20790
[37]Ahsan N, Donnart T, Nouri M Z, Komatsu S. Tissue-speci?c defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res, 2010, 9: 4189-4204
[38]Girardini J E, Dissous C, Serra E. Schistosoma mansoni ferredoxin NADP(H) oxidoreductase and its role in detoxi?cation. Mol Biochem Parasitol, 2002, 124: 37-45
[39]Wang C, Wesener S R, Zhang H L, Cheng Y Q. An FAD-dependent pyridine nucleotide-disul?de oxidoreductase is involved in disul?de bond formation in FK228 snticancer depsipeptide. Chem Biol, 2009. 16: 585-593
[40]Majoul T, Bancel E, Triboï E, Hamidal J B, Branlard G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics, 2003, 3: 175-183
[41]Rainwater D T, Gossetp D R, Millhollon E P, Hanna H Y, Banks S W, Lucas M C. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress. Free Radical Res, 1996, 25: 421-435
[42]Ai Q(艾青), Mou T-M(牟同敏). Progresses in rice heat tolerance. Hubei Agric Sci (湖北农业科学), 2008, 47(1): 107-111 (in Chinese with English abstract)
[43]Farrell T C, Fox K M, Williams R L, Fukai S. Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Res, 2006, 98: 178-194
[44]Dietz K J, Horling F, Konig J, Baier M. The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot, 2002, 53: 1321-1329
[45]Baier M, Dietz K J. Alkyl hydroperoxide reductases: The way out of the oxidative breakdown of lipids in chloroplasts. Trends Plant Sci, 1999, 4: 166-168
[46]Baier M. Dietz K J. Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis: Evidence from transgenic Arabidopsis. Plant Physiol, 1999, 119: 1407-1414
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!