作物学报 ›› 2011, Vol. 37 ›› Issue (05): 820-831.doi: 10.3724/SP.J.1006.2011.00820
周伟辉1,薛大伟2,张国平1,*
ZHOU Wei-Hui1,XUE Da-Wei2,ZHANG Guo-Ping1,*
摘要: 高温已经成为水稻产量的主要限制因素,且其影响由于全球温室效应的加剧而呈扩大趋势。本研究在鉴定耐热水稻基因型的基础上,从生理学和蛋白质组学上进行耐性机理研究。结果表明,苗期或抽穗期高温处理导致结实率、SPAD值、株高、根长和生物量下降,丙二醛、过氧化氢、超氧阴离子含量增加和超氧化物歧化酶活性提高。同时,高温胁迫对热敏感品种明恢63的影响大于对耐热品种密阳46的影响。蛋白质组学分析表明,高温使光合作用相关蛋白、能量类蛋白、代谢类蛋白表达量下降,抗逆相关蛋白表达量上升。另外,蛋白试验结果佐证了密阳46的耐热性以及水稻抽穗期对高温的敏感性。本研究还首次发现抗逆相关蛋白2-cys过氧化物酶BAS1的表达量在高温下上升。
[1]Wilkins M R, Williams K L, Appel R D, Hochstrasser D F. Proteome Research, New Frontiers in Functional Genomics. Berlin: Springer, 1997. pp 304-331 [2]Süle A, Vanrobaeys F, Hajós G, Van Beeumen J, Devreese B. Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry, 2004, 65: 1853-1863 [3]Xu C P, Huang B R. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. J Exp Bot, 2008, 59: 4183-4194 [4]Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 2006, 5: 484-496 [5]Pinheiro C, Kehr J, Ricardo C P. Effects of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta, 2005, 221: 716-728 [6]Wang S B, Chen F, Sommerfeld M, Hu Q. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta, 2004, 220: 17-29 [7]Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235-244 [8]Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Grassi F, Agradi E. Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere, 2006, 62: 1234-1244 [9]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomics analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131-1145 [10]Imin N, Kerim T, Weinman J J, Rolfe B G. Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics, 2001, 1: 1149-1161 [11]Salekdeh G H, Siopongco J, Wade L J, Ghareyazieb B, Bennett J. A proteomics approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res, 2002, 76: 199-219 [12]Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2002, 2: 947-959 [13]Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics, 2003, 3: 527-535 [14]Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971-9975 [15]Grover A, Chandramouli A, Agarwal S, Katiyar-Agarwal S, Agarwal M, Sahi C. Transgenic rice for tolerance against abiotic stresses. In: Datta S K ed. Rice Improvement in the Genomic Era. USA: Hawarth Press, 2009. pp 237-267 [16]Lee D G, Ahsan N, Lee S, Kang K Y, Bahk J D, Lee I, Lee B. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 2007, 7: 3369-3383 [17]Han F, Chen H, Li X J, Yang M F, Liu G S, Shen S H. A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta, 2009, 1794: 1625-1634 [18]Satake T, Yoshida S. High temperature induced sterility in indica rices at flowering. Jpn J Crop Sci, 1978, 47: 6-17 [19]Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot, 2010, 61: 143-156 [20]Lin S K, Chang M C, Tsai Y C, Lur H S. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics, 2005, 5: 2140-2156 [21]Yoshida S, Forna D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 62-63 [22]Xu C-C(许长成), Zhao S-J(赵世杰), Zou Q(邹琦). Interference factors of thiobarbituric acid determination in plant membrane lipid peroxidation. Plant Physiol Commun (植物生理学通讯), 1993, 29(5): 361-363 (in Chinese) [23]Ruan H-H(阮海华), Shen W-B(沈文飚), Ye M-B(叶茂炳), Xu L-L(徐朗莱). Effects of nitric oxide on oxidative injury in wheat leaves under salt stress. Chin Sci Bull(科学通报), 2001, 46(23): 1993-1997 (in Chinese) [24]Lin C C, Kao C H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci, 2001, 160: 323-329 [25]Li J Y, Jiang A L, Zhang W. Salt stress-induced programmed cell death in rice root tip cells. J Integr Plant Biol, 2007, 49: 481-486 [26]Wang J-Y(王经源), Chen S-Y(陈舒奕), Liang Y-Y(梁义元), Lin W-X(林文雄). Improvement of ISO-DALT electrophoresis system. J Fujian Agric & For Univ (福建农林大学学报), 2006, 35(2): 187-190 (in Chinese with English abstract) [27]Yu C-L(余初浪), Yan S-P(严顺平), Sun W-N(孙卫宁), Yang L(杨玲). High-resolution two-dimensional electrophoresis for total proteins in rice roots, leaves and suspension cells. Chin J Rice Sci (中国水稻科学), 2006, 20(5):549-552 (in Chinese with English abstract) [28]Yan J X, Wait R, Berkelman T, Harry R A, Westbrook J A, Wheeler C H, Dunn M J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass pectrometry. Electrophoresis, 2000, 21: 3666-3672 [29]Neuhoff V,Arnold N,Taube D,Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 1988, 9: 255-262 [30]Makino A, Mae T, Ohira K. Photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Planta, 1985, 166: 414-420 [31]Bose A, Ghosh B. Effect of heat stress on ribulose 1,5-bisphosphate carboxylase in rice. Phytochemistry, 1995, 38: 1115-1118 [32]Hankamer B,Barber J,Boekema F J.Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 64l-671 [33]James B. Crystal structure of the oxygen-evolving complex of photosystem II. Inorg Chem, 2008, 47: 1700-1710 [34]Ahsan N, Lee D G, Lee K W, Alam I, Lee S H, Bahk J D, Lee B H. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem, 2008, 46: 1062-1070 [35]Ahsan N, Lee D G, Lee S H, Kang K Y, Bahk J D, Choi M S, Lee I J, Renaut J, Lee B H. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant, 2007, 131: 555-570 [36]Wang Z Y, Freire E, McCarty R E. Influence of nucleotide binding site occupancy on the thermal stability of the F1 portion of the chloroplast ATP synthase. J Biol Chem, 1993, 268: 20785-20790 [37]Ahsan N, Donnart T, Nouri M Z, Komatsu S. Tissue-speci?c defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res, 2010, 9: 4189-4204 [38]Girardini J E, Dissous C, Serra E. Schistosoma mansoni ferredoxin NADP(H) oxidoreductase and its role in detoxi?cation. Mol Biochem Parasitol, 2002, 124: 37-45 [39]Wang C, Wesener S R, Zhang H L, Cheng Y Q. An FAD-dependent pyridine nucleotide-disul?de oxidoreductase is involved in disul?de bond formation in FK228 snticancer depsipeptide. Chem Biol, 2009. 16: 585-593 [40]Majoul T, Bancel E, Triboï E, Hamidal J B, Branlard G. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics, 2003, 3: 175-183 [41]Rainwater D T, Gossetp D R, Millhollon E P, Hanna H Y, Banks S W, Lucas M C. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress. Free Radical Res, 1996, 25: 421-435 [42]Ai Q(艾青), Mou T-M(牟同敏). Progresses in rice heat tolerance. Hubei Agric Sci (湖北农业科学), 2008, 47(1): 107-111 (in Chinese with English abstract) [43]Farrell T C, Fox K M, Williams R L, Fukai S. Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Res, 2006, 98: 178-194 [44]Dietz K J, Horling F, Konig J, Baier M. The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot, 2002, 53: 1321-1329 [45]Baier M, Dietz K J. Alkyl hydroperoxide reductases: The way out of the oxidative breakdown of lipids in chloroplasts. Trends Plant Sci, 1999, 4: 166-168 [46]Baier M. Dietz K J. Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis: Evidence from transgenic Arabidopsis. Plant Physiol, 1999, 119: 1407-1414 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|