欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1505-1510.doi: 10.3724/SP.J.1006.2011.01505

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻非整倍体无性繁殖过程中的遗传稳定性

龚志云,石国新,刘秀秀,裔传灯,于恒秀*   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 教育部植物功能基因组学重点实验室, 江苏扬州 225009
  • 收稿日期:2011-01-12 修回日期:2011-05-20 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 于恒秀, E-mail: hxyu@yzu.edu.cn, ?Tel: 0514-87979304, Fax: 0514-87972138
  • 基金资助:

    本研究由国家自然科学基金项目(30170567, 30600345, 30770131, 30771210, 31070278)和江苏高校优势学科建设工程资助项目资助。

Genetic Stability of Rice Aneuploid during Its Asexual Propagation

GONG Zhi-Yun,SHI Guo-Xin,LIU Xiu-Xiu,YI Chuan-Deng,YU Heng-Xiu*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
  • Received:2011-01-12 Revised:2011-05-20 Published:2011-09-12 Published online:2011-06-28
  • Contact: 于恒秀, E-mail: hxyu@yzu.edu.cn, ?Tel: 0514-87979304, Fax: 0514-87972138

摘要: 无性繁殖是保存非整倍体的一个有效手段。为研究该过程中非整倍体的遗传稳定性, 从水稻第8染色体短臂端三体(2n+·8S)自交后代中筛选出相应端四体(2n+·8S+·8S), 其田间性状表现为植株矮小, 叶片非常窄且内卷, 结实率差。在多年无性繁殖过程中, 该端四体所添加的其中1条·8S容易丢失使无性系产生性状变异。通过FISH分析发现该无性变异系的原始系中所添加的2条·8S, 其中1条·8S在着丝粒区域检测不到水稻着丝粒的基本组分CentO序列, 但可以检测到水稻着丝粒的另一基本组分CRR序列, 该染色体可以稳定遗传; 另外1条·8S在着丝粒区域同时检测不到CentO和CRR序列, 该染色体不能稳定遗传。而在最初保存的相应端三体亲本材料的·8S中, 同时包含CentO和CRR序列。说明·8S上的CentO和CRR在多年的组织培养过程中会随机丢失, 导致含有·8S的非整倍体在无性繁殖过程中的遗传不稳定性。

关键词: 水稻, 非整倍体, 端着丝粒染色体, CentO, CRR

Abstract: Telotetrasome is a kind of aneuploid with two additional identical telocentric chromosomes. To investigate the genetic stability of riceaneuploid during its asexual propagation,a telotetrasome (2n+·8S+·8S) was selected from the progenies of a rice telotrisome (2n+·8S), and preserved by asexsual reproduction. But one of the extra short arms (·8S) was easy to be lost in the asexual propagation offspring of 2n+·8S+·8S and led to morphological variations. FISH results indicated that one of the two extra ·8S was short of detectable rice centromeric satellite repeat (CentO) and centromere-specific retrotransposon (CRR) and could not be transmitted stably. The other extra ·8S contained CRR, but not detectable CentO and could be transmitted steadily. However, the extra ·8S contained the CentO and CRR sequences simultaneously in the initial telotrisomic line (2n+·8S). These results showed that CentO and CRR of the extra ·8S may be randomly lost and led inheritance instability in the aneuploid harbouring extra ·8S during asexual propagation.

Key words: Rice, Aneuploid, Telocentric chromosome, CentO, CRR

[1]Yu W, Han F, Kato A, Birchler J A. Characterization of a maize isochromosome 8S*8S. Genome, 2006, 49: 700–706
[2]Cheng Z K, Yan H H, Dang B Y. Microdissection and amplification of the chromosome arm 5S in a rice telo-tetrasomic. Chin Sci Bull, 1998, 43: 590–594 
[3]Wang Z X, Ideta O, Yoshimura A, Iwata N. Identification of extra chromosome of aneuhaploids and tetrasomics in rice and the use of these aneuhaploids in genome analysis. Breed Sci, 1995, 45: 327–330
[4]Cheng Z K, Yan H H, Yu H X, Tang S C, Jiang J M, Gu M H, Zhu L H. Development and applications of a complete set of rice telotrisomics. Genetics, 2001, 157: 361–368
[5]Cheng Z-K(程祝宽), Yan H-H(颜辉煌), Yu H-X(于恒秀), Qian Q(前钱), Yi C-D(裔传灯), Gu M-H(顾铭洪), Zhu L-H(朱立煌). Fast assignment of DNA sequences to individual chromosome arms based on dosage effects from a set of rice telotrisomics. Acta Bot Sin (植物学报), 2000, 42(7): 708–711 (in Chinese with English abstract)
[6]Houben A, Schubert I. DNA and proteins of plant centromeres. Curr Opin Plant Biol, 2003, 6: 554–560
[7]Malik H S, Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev, 2002, 12: 711–718
[8]Nagaki K, Kashihara K, Murata M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma, 2009, 118: 249–257
[9]Cheeseman I M, Drubin D G, Barnes G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol, 2002, 157: 199–203
[10]Clarke L, Carbon J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature, 1983, 305: 23–28
[11]Clarke L. Centromeres of budding and fission yeasts. Trends Genet, 1990, 6: 150–154
[12]Ananiev E V, Phillips R L, Rines H W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA, 1998, 95: 13073–13078
[13]Kamm A, Galasso I, Schmidt T, Heslop-Harrison J S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol, 1995, 27: 853–862
[14]Sun X, Wahlstrom J, Karpen G. Molecular structure of a functional Drosophila centromere. Cell, 1997, 91: 1007–1019
[15]Schueler M G, Higgins A W, Rudd M K, Gustashaw K, Willard H F. Genomic and genetic definition of a functional human centromere. Science, 2001, 294: 109–115
[16]Wevrick R, Willard H F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA, 1989, 86: 9394–9398
[17]Ma J, Jackson S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res, 2006, 16: 251–259
[18]Henikoff S, Ahmad K, Malik H S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 2001, 293: 1098–1102
[19]Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res, 2002, 9: 117–121
[20]She C-W(佘朝文), Song Y-C(宋运淳). Advances in research of the structure and function of plant centromeres. Hereditas(遗传), 2006, 28(12): 1597–1606 (in Chinese with English abstract)
[21]Cheng Z, Dong F, Langdon T, Ouyang S, Buell C R, Gu M, Blattner F R, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14: 1691–1704
[22]Nagaki K, Cheng Z, Ouyang S, Talbert P B, Kim M, Jones K M, Henikoff S, Buell C R, Jiang J. Sequencing of a rice centromere uncovers active genes. Nat Genet, 2004, 36: 138–145
[23]Kurata N. OT. Karyotype analysis in rice I. A new method for identifying all chromosome pairs. Jpn J Genet, 1978, 53: 251–255
[24]Wu H K. Note on preparing of pachytene chromosomes by double mordant. Sci Agric, 1967, 15: 40–44
[25]Jiang J, Gill B S, Wang G L, Ronald P C, Ward D C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA, 1995, 92: 4487–4491
[26]Cheng Z, Buell C R, Wing R A, Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res, 2002, 10: 379–387
[27]Diao X-M(刁现民), Sun J-S(孙敬三). Cytological and molecular biological research progress in plant somaclonal variation. Chin Bull Bot (植物学通报), 1999, 16(4): 372–377 (in Chinese with English abstract)
[28]Larkin P J, Scowcroft W P. Somaclonal variation novel source of variability from cell culture for plant improvement. Theor Appl Genet, 1981, 60: 197–214
[29]Thomas J W, Schueler M G, Summers T J, Blakesley R W, McDowell J C, Thomas P J, Idol J R, Maduro V V, Lee-Lin S Q, Touchman J W, Bouffard G G, Beckstrom-Sternberg S M, Green E D. Pericentromeric duplications in the laboratory mouse. Genome Res, 2003, 13: 55–63
[30]Maggert K A, Karpen G H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics, 2001, 158: 1615–1628
[31]Amor D J, Choo K H. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 2002, 71: 695–714
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!