作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1505-1510.doi: 10.3724/SP.J.1006.2011.01505
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
龚志云,石国新,刘秀秀,裔传灯,于恒秀*
GONG Zhi-Yun,SHI Guo-Xin,LIU Xiu-Xiu,YI Chuan-Deng,YU Heng-Xiu*
摘要: 无性繁殖是保存非整倍体的一个有效手段。为研究该过程中非整倍体的遗传稳定性, 从水稻第8染色体短臂端三体(2n+·8S)自交后代中筛选出相应端四体(2n+·8S+·8S), 其田间性状表现为植株矮小, 叶片非常窄且内卷, 结实率差。在多年无性繁殖过程中, 该端四体所添加的其中1条·8S容易丢失使无性系产生性状变异。通过FISH分析发现该无性变异系的原始系中所添加的2条·8S, 其中1条·8S在着丝粒区域检测不到水稻着丝粒的基本组分CentO序列, 但可以检测到水稻着丝粒的另一基本组分CRR序列, 该染色体可以稳定遗传; 另外1条·8S在着丝粒区域同时检测不到CentO和CRR序列, 该染色体不能稳定遗传。而在最初保存的相应端三体亲本材料的·8S中, 同时包含CentO和CRR序列。说明·8S上的CentO和CRR在多年的组织培养过程中会随机丢失, 导致含有·8S的非整倍体在无性繁殖过程中的遗传不稳定性。
[1]Yu W, Han F, Kato A, Birchler J A. Characterization of a maize isochromosome 8S*8S. Genome, 2006, 49: 700–706 [2]Cheng Z K, Yan H H, Dang B Y. Microdissection and amplification of the chromosome arm 5S in a rice telo-tetrasomic. Chin Sci Bull, 1998, 43: 590–594 [3]Wang Z X, Ideta O, Yoshimura A, Iwata N. Identification of extra chromosome of aneuhaploids and tetrasomics in rice and the use of these aneuhaploids in genome analysis. Breed Sci, 1995, 45: 327–330 [4]Cheng Z K, Yan H H, Yu H X, Tang S C, Jiang J M, Gu M H, Zhu L H. Development and applications of a complete set of rice telotrisomics. Genetics, 2001, 157: 361–368 [5]Cheng Z-K(程祝宽), Yan H-H(颜辉煌), Yu H-X(于恒秀), Qian Q(前钱), Yi C-D(裔传灯), Gu M-H(顾铭洪), Zhu L-H(朱立煌). Fast assignment of DNA sequences to individual chromosome arms based on dosage effects from a set of rice telotrisomics. Acta Bot Sin (植物学报), 2000, 42(7): 708–711 (in Chinese with English abstract) [6]Houben A, Schubert I. DNA and proteins of plant centromeres. Curr Opin Plant Biol, 2003, 6: 554–560 [7]Malik H S, Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev, 2002, 12: 711–718 [8]Nagaki K, Kashihara K, Murata M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma, 2009, 118: 249–257 [9]Cheeseman I M, Drubin D G, Barnes G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol, 2002, 157: 199–203 [10]Clarke L, Carbon J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature, 1983, 305: 23–28 [11]Clarke L. Centromeres of budding and fission yeasts. Trends Genet, 1990, 6: 150–154 [12]Ananiev E V, Phillips R L, Rines H W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA, 1998, 95: 13073–13078 [13]Kamm A, Galasso I, Schmidt T, Heslop-Harrison J S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol, 1995, 27: 853–862 [14]Sun X, Wahlstrom J, Karpen G. Molecular structure of a functional Drosophila centromere. Cell, 1997, 91: 1007–1019 [15]Schueler M G, Higgins A W, Rudd M K, Gustashaw K, Willard H F. Genomic and genetic definition of a functional human centromere. Science, 2001, 294: 109–115 [16]Wevrick R, Willard H F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA, 1989, 86: 9394–9398 [17]Ma J, Jackson S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res, 2006, 16: 251–259 [18]Henikoff S, Ahmad K, Malik H S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 2001, 293: 1098–1102 [19]Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res, 2002, 9: 117–121 [20]She C-W(佘朝文), Song Y-C(宋运淳). Advances in research of the structure and function of plant centromeres. Hereditas(遗传), 2006, 28(12): 1597–1606 (in Chinese with English abstract) [21]Cheng Z, Dong F, Langdon T, Ouyang S, Buell C R, Gu M, Blattner F R, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14: 1691–1704 [22]Nagaki K, Cheng Z, Ouyang S, Talbert P B, Kim M, Jones K M, Henikoff S, Buell C R, Jiang J. Sequencing of a rice centromere uncovers active genes. Nat Genet, 2004, 36: 138–145 [23]Kurata N. OT. Karyotype analysis in rice I. A new method for identifying all chromosome pairs. Jpn J Genet, 1978, 53: 251–255 [24]Wu H K. Note on preparing of pachytene chromosomes by double mordant. Sci Agric, 1967, 15: 40–44 [25]Jiang J, Gill B S, Wang G L, Ronald P C, Ward D C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA, 1995, 92: 4487–4491 [26]Cheng Z, Buell C R, Wing R A, Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res, 2002, 10: 379–387 [27]Diao X-M(刁现民), Sun J-S(孙敬三). Cytological and molecular biological research progress in plant somaclonal variation. Chin Bull Bot (植物学通报), 1999, 16(4): 372–377 (in Chinese with English abstract) [28]Larkin P J, Scowcroft W P. Somaclonal variation novel source of variability from cell culture for plant improvement. Theor Appl Genet, 1981, 60: 197–214 [29]Thomas J W, Schueler M G, Summers T J, Blakesley R W, McDowell J C, Thomas P J, Idol J R, Maduro V V, Lee-Lin S Q, Touchman J W, Bouffard G G, Beckstrom-Sternberg S M, Green E D. Pericentromeric duplications in the laboratory mouse. Genome Res, 2003, 13: 55–63 [30]Maggert K A, Karpen G H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics, 2001, 158: 1615–1628 [31]Amor D J, Choo K H. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 2002, 71: 695–714 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|