作物学报 ›› 2012, Vol. 38 ›› Issue (01): 121-128.doi: 10.3724/SP.J.1006.2012.00121
王成雨,代兴龙,石玉华,王振林,陈晓光,贺明荣*
WANG Cheng-Yu, DAI Xing-Long, SHI Yu-Hua, WANG Zhen-Lin, CHEN Xiao-Guang,HE Ming-Rong*
摘要: 以中穗型小麦品种山农15为材料,在2个氮肥水平(180 kg hm-2和240 kg hm-2)和2个密度(150×104 hm-2和225×104 hm-2)下,研究了抗倒性能相关的形态学特征、茎基部节间化学组分、抗倒指数(茎秆机械强度/茎秆重心高度)、木质素合成相关酶活性和籽粒产量的变化特点,以及抗倒指数与形态学和生化指标的相关性。结果表明,施氮水平和种植密度间存在显著的互作效应,当施氮水平由180 kg hm-2增至240 kg hm-2或种植密度由150×104 hm-2增加到225×104 hm-2时,茎秆重心高度、基部节间长度显著提高,基部节间直径、厚度、充实度、机械强度和抗倒指数显著降低,同时茎秆基部节间纤维素含量、木质素含量显著减少,含氮量显著升高,碳氮比(C/N比)以及木质素合成相关酶活性显著降低。逐步回归分析表明,氮肥水平对小麦抗倒性的影响大于种植密度。本试验条件下,氮肥水平180 kg hm-2和种植密度为150×104 hm-2的处理穗数较低,但穗粒数和千粒重显著高于其它处理,因而籽粒产量最高。建议在降低氮肥用量至180 kg hm-2的同时降低种植密度至150×104 hm-2,可在增强植株抗倒伏能力的同时获得高产。
[1]Wei F-Z(魏凤珍), Li J-C(李金才), Wang C-Y(王成雨), Qu H-J(屈会娟), Shen X-S(沈学善). Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. Acta Agron Sin (作物学报), 2008, 34(6): 1080-1085 (in Chinese with English abstract) [2]Li J-C(李金才), Yin J(尹钧), Wei F-Z(魏凤珍). Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin (作物学报), 2005, 31(5): 662-666 (in Chinese with English abstract) [3]Cui Z L, Zhang F S, Chen X P, Dou Z X, Li J L. In-season nitrogen management strategy for winter wheat: maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Res, 2010, 116: 140-146 [4]Zhang F-S(张福锁), Wang J-Q(王激清), Zhang W-F(张卫峰), Cui Z-L(崔振岭), Ma W-Q(马文奇), Chen X-P(陈新平), Jiang R-F(江荣风). Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin (土壤学报), 2008, 45(5): 915-923 (in Chinese with English abstract) [5]Tripathi S C, Sayre K D, Kaul J N, Narang R S. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271-290 [6]Fang Y, Xu B C, Turner N C, Li F M. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat and affected by seeding rate and root pruning. Eur J Agron, 2010, 33: 257-268 [7]Hiltbrunner J, Streit B, Liedgens M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Res, 2007, 102: 163-171 [8]Berry P M, Griffin J M, Sylvester-Bradley R, Scott R K, Spink J H, Baker C J, Clare R W. Controlling plant form through husbandry to minimize lodging in wheat. Field Crops Res, 2000, 67: 59-81 [9]Wang F-H(王法宏), Wang X-Q(王旭清), Ren D-C(任德昌), Cao H-X(曹宏鑫), Dong Y-H(董玉红), Sayre K. Study and ridge culture technique in irrigated winter wheat. J Triticeae Crops (麦类作物学报), 2004, 24(2): 68-72 (in Chinese with English abstract) [10]Zhao G-C(赵广才). Key technics of winter wheat management in spring. Crops (作物杂志), 2007, (1): 40 (in Chinese) [11]Tang Q Y, Peng S B, Buresh R J, Zou Y B, Castilla N P, Mew T W, Zhong X H. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Res, 2007, 102: 219-227 [12]Wang Y(王勇), Li Q-Q(李晴棋), Li C-H(李朝恒), Li A-F(李安飞). Studies on culm quality and anatomy of wheat varieties. Acta Agron Sin (作物学报), 1998, 24(4): 452-458 (in Chinese with English abstract) [13]Berry P M, Spink J, Sterling M, Agarwal U P, Atalla R H. Methods for rapidly measuring the lodging resistance of wheat cultivars. J Agron Crop Sci, 2003, 189: 390-401 [14]Crook M J, Ennos A R. The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two cultivars of winter wheat. J Exp Bot, 1995, 46: 931-938 [15]Li H C, Li L, Wegenast T, Longin C F, Xu X W, Melchinger A E, Chen S J. Effect of N supply on stalk quality in maize hybrids. Field Crops Res, 2010, 118: 208-214 [16]Updegraff D M. Semimicro determination of cellulose in biological materials. Anal Biochem, 1969, 32: 420-424 [17]Esechie H A, Rodriguez V, Al-Asmi H. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. Eur J Agron, 2004, 21:21-30 [18]Li X J, Li S Y, Li J X. Effects of GA3 on lignin and auxin contents and the correlated enzyme activities in bayberry (Myrica rubra Bieb.) during flower-bud induction. Plant Sci, 2003, 164: 549-556 [19]Jing C-Q(井长勤), Zhou Z(周忠), Zhang Y(张永). A Study of the effect of nitrogen application on the lodging of wheat. J Xuzhou Normal Univ (徐州师范大学学报), 2003, 21(4): 46-49 (in Chinese with English abstract) [20]Xiong Y-S(熊又升), Yuan J-F(袁家富), Hao F-X(郝福新), Ruan J-Z(阮际洲), Zhao S-J(赵书军), Wang Z-H(王朝辉). Effect of nitrogen dosage on the yield and quality of wheat. J Huazhong Agric Univ (华中农业大学学报), 2009, 28(6): 697-700 (in Chinese with English abstract) [21]Cao C-F(曹承富), Kong L-C(孔令聪), Wang J-L(汪建来), Zhao B(赵斌), Zhao Z(赵竹). Effects of nitrogen on yield, quality and nutritive absorption of middle and strong gluten wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(1): 46-50 (in Chinese with English abstract) [22]Liu P(刘萍), Guo W-S(郭文善), Xu Y-M(徐月明), Feng C-N(封超年), Zhu X-K(朱新开), Peng Y-X(彭永欣). Effect of planting density on grain yield and quality of weak-gluten and medium-gluten wheat. J Triticeae Crops (麦类作物学报), 2006, 26(5): 117-121 (in Chinese with English abstract) [23]Wang Z-J(王之杰), Guo T-C(郭天财), Wang H-C(王化岑), Wang Y-H(王永华). Effect of planting density on photosynthetic characteristics and grain yield of super-high-yield winter wheat at late growth stages. J Triticeae Crops (麦类作物学报), 2001, 21(3): 64-67 (in Chinese with English abstract) [24]Bhaskara Reddy M V, Arul J, Angers P, Couture L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem, 1999, 47: 1208-1216 [25]Zhang Z-L(张志良), Qu W-J(瞿伟菁). Experimental Methods of Plant Physiology (植物生理学实验指导), 3rd edn. Beijing: Higher Education Press, 2003. pp 277-279 (in Chinese) [26]Liu X-Y(刘晓燕), Jin J-Y(金继运), He P(何萍), Gao W(高伟), Li W-J(李文娟). Effects of potassium chloride on lignin metabolism and its relation to resistance of corn to stalk rot. Sci Agric Sin (中国农业科学), 2007, 40(12): 2780-2787 (in Chinese with English abstract) [27]Knobloch K H, Hahlbrock K. Isoenzymes of p-coumarate: CoA ligase form cell suspension cultures of Glycine max. Eur J Biochem, 1975, 52: 311-320 [28]Morrison T A, Kessler J R, Hatfield R D, Buxton D R. Activity of two lignin biosynthesis enzymes during development of a maize internode. J Sci Food Agric, 1994, 65: 133-139 [29]Fageria N K, Baligar V C, Clark R B. Physiology of Crop Production. New York: Food Products Press, 2005, pp 8-12 [30]Yu Z-W(于振文). Cultivation of Field Crops in North China (作物栽培学各论). Beijing: China Agriculture Press, 2003. pp 31-34 (in Chinese) [31]Wang B-S(王宝山). Plant Physiology (植物生理学). Beijing: Science Press, 2004. pp 141-151(in Chinese) [32]Guo W-J(郭维俊), Wang F-E(王芬娥), Huang G-B(黄高宝), Zhang W-F(张锋伟), Wei S-L(魏时来). Experiment on mechanical properties and chemical compositions of wheat stems. Trans Chin Soc Agric Machinery (农业机械学报), 2009, 40(2): 110-114 (in Chinese with English abstract) [33]Grima-Pettenati J, Goffner D. Lignin genetic engineering revisited. Plant Sci, 1999, 145: 51-65 [34]Vanholme R, Morreel K, Ralph J, Boerjan W. Lignin engineering. Curr Opin Plant Biol, 2008, 11: 278-285 [35]Sewalt V J H, Ni W, Blount J W. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol, 1997, 115: 41-50 [36]Lee D, Kmeyer K, Kchapple C. Down-regulation of 4-coumarate CoA ligase (4CL) in Arabidopsis effect on lignin composition and implication for the control of monlignol biosynthesis. Plant Cell, 1997, 9: 1985-1998 [37]Kajita S, Hishiyama S, Tommura Y. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate coenzyme A ligase is depressed. Plant Physiol, 1997, 114: 871-879 [38]Jacqueline G P, Deborah G. Lignin genetic engineering revisited. Plant Sci, 1999, 145: 51-65 [39]Zhong R Q, Ripperger A, Ye Z H. Ectopic deposition of lignin in the pith of stems of two arabidopsis mutants. Plant Physiol, 2000, 23: 59-70 |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[8] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[9] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[10] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
|