作物学报 ›› 2012, Vol. 38 ›› Issue (01): 71-79.doi: 10.3724/SP.J.1006.2012.00071
吴昆仑,赵媛,迟德钊*
WU Kun-Lun,ZHAO Yuan,CHI De-Zhao*
摘要: 以150份青稞品种为材料, 采用碘–碘化钾染色法进行表型鉴定, 筛选出含糯性基因型的4份参试材料, 分别是品种IG107028、Puebla、互助双槽人和APM-HC1905。经双波长法测定, 150份参试材料的直链淀粉含量(AC)为12.4%~38.5%, 平均26.0%; 4份糯性参试材料的直链淀粉含量为12.4%~18.6%, 平均16.7%。以直链淀粉含量差别较大的51份材料为模板, 利用引物P4进行扩增, 结果P4引物在51份材料中均有扩增产物出现, 且随着参试材料直链淀粉含量的增大, 其扩增产物的分子量有逐渐增大的趋势, Wx基因位点表现出多态性, 二者呈正相关。根据带型将51份材料分成I型、II型、III型和IV型, 其扩增片段分子量分别为457、481、489和491 bp, 各类型品种的直链淀粉含量分别为12%~27%、29%~30%、31%~35%和36%~38%。P4可作为糯性青稞品种选育的辅助选择标记。
[1]Chao S, Sharp P J, Worland E J. RFLP-based genetic maps of wheat homologous group 7 chromosomes. Theor Appl Genet, 1989, 78: 495–504 [2]Denyer K, Barber L M, Burton R, Hedley C L, Hylton C M, Johnson S. The isolation and characterization of novel low-amylose mutants of Pisum sativum L. Plant Cell & Environ, 1995, 18: 1019–1026 [3]Hylton C M, Denyer K, Keeling P L, Chang M T, Smith A M.The effect of waxy mutation on the granule-bound starch synthases of barley and maize endosperms. Planta, 1996, 198: 230–237 [4]Shure M,Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell, 1983, 35: 225–233 [5]Clark J R, Robertson M, Ainsworth C C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol, 1991, 16: 1099–1101 [6]Bao J S, Corke H, Sun M. Microsatallites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor Appl Genet, 2002, 105: 898–905 [7]Kramer H H, Blander B A. Orientating linkage maps on the chromosomes of barley. Crop Sci, 1961, 1: 339–342 [8]Tabata M. Studies of a gametophyte factor in barley. Jpn J Genet, 1961, 36: 157–167 [9]Kleinhofs A. Integrating barley RFLP and classical marker maps. Barley Genet Newsl, 1997, 27: 105–112 [10]Nakao S. On waxy barleys in Japan. Seiken Jiho, 1950, 4: 111–113 [11]Ono T, Suzuki H. Endosperm characters in hybrids between barley varieties with starchy and waxy endosperms. Seiken Jiho, 1957, 8: 11–19 [12]Rosichan J, Nilan R A, Arenaz P, Kleinhofs A. Intragenic recombination at the waxy locus in Hordeum vulgare. Barley Genet Newsl, 1979, 9: 79–85 [13]Domon E, Saito A, Takeda K. Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst, 2002, 77: 351–359 [14]Sun Y-Y(孙业盈), Lü Y(吕彦), Dong C-L(董春林), Wang P-R(王平荣), Huang X-Q(黄晓群), Deng X-J(邓晓建). Progress in regulation of rice Wx gene expression. Hereditas (遗传), 2005, 27(6): 79–85 (in Chinese with English abstract) [15]Bollieh C N, Webb B D. Inheritance of amylose in two hybrid populations of rice. Cereal Chem, 1973, 50: 631–636 [16]Domon E, Yanagisawa T, Saitol A, Takeda K. Single nucleotide polymorphism genotyping of the barley waxy gene by polymerase chain reaction with confronting two-pair primers. Plant Breed, 2004, 123: 225–228 [17]Sharp P J, Chao S, Desai S, Gale M D.The isolation, characterization and application in Triticeae of a set of wheat RFLP probe identifying each homoeologous chromosome arm. Theor Appl Genet, 1989, 78: 342–348 [18]Zhu C-M(朱彩梅), Zhang J(张京). Genetic diversity analysis of Waxy barley in China based on SSR markers. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 564–572 (in Chinese with English abstract) [19]Nakamura T, Yamamori M, Hirano H, Hidaka S. Identification of three Wx proteins in wheat (Triticum aestivum L). Biochem Genet, 1993, 111: 75–86 [20]Vrinten P, Nakamura T, Yamamori M. Molecular characterization of waxy mutations in wheat. Mol Gen Genet, 1999, 261: 463–471 [21]Wang H-P(王海萍), Tang C-H(唐朝辉), Liu S-X(刘少翔), Zhang L-P(张兰萍), Lu C-F(逯成芳). Analysis of waxy proteins in Shanxi winter wheat cultivars using SDS-PAGE and molecular markers. Acta Agric Boreali-Sin (华北农学报), 2007, 22(1): 98–102 (in Chinese with English abstract) [22]Juliano B O, Pascual C G. Quality characteristics of milled rice grown in different countries. IRRI Res Paper Series, 1980, 48: 1–5 [23]McKenzie K S, Rutger J N. Genetic analysis of amylose content alkali spreading score and grain dimensions in rice. Crop Sci, 1983, 23: 306–313 [24]Briney A, Wilson R, Potter R H, Barclay I, Crosbie G, Appels R, Jones M G K. A PCR-based marker for selection of starch and potential noodle quality in wheat. Mol Breed, 1998, 4: 427–433 [25]Wang F(王芳), Zhao H(赵辉), Wang Y(王燕), Wang X-Z(王宪泽). Relationship between fragment length polymorphism with waxy and amylase content in wheat. J Plant Physiol Mol Biol (植物生理与分子生物学报), 2005, 31(3): 269–274 (in Chinese with English abstract) |
[1] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[2] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[3] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[6] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[7] | 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580. |
[8] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[9] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[10] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[11] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[12] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[13] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[14] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[15] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
|