欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 168-173.doi: 10.3724/SP.J.1006.2012.00168

• 研究简报 • 上一篇    下一篇

水稻叶尖早衰突变体lad的形态、生理分析与基因定位

杜青,方立魁,桑贤春,凌英华,李云峰,杨正林,何光华,赵芳明*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室, 重庆400716
  • 收稿日期:2011-05-19 修回日期:2011-09-18 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 赵芳明, E-mail: zhaofangming2004@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31071072)和重庆市重大攻关项目(CSTC, 2010AA1013)资助。

Analysis of Phenotype and Physiology together with Mapping of a Leaf Apex Dead Gene (lad) in Rice (Oryza sativa L.)

DU Qing,FANG Li-Kui,SANG Xian-Chun,LING Ying-Hua,LI Yun-Feng,YANG Zheng-Lin,HE Guang-Hua,ZHAO Fang-Ming*   

  1. Rice Research Institute, Southwest University / Chongqing Key Laboratory of Application and Safety of Genetically Modified Crops, Chongqing 400716, China?
  • Received:2011-05-19 Revised:2011-09-18 Published:2012-01-12 Published online:2011-11-07
  • Contact: 赵芳明, E-mail: zhaofangming2004@163.com

摘要: 叶片作为植物的主要光合作用场所,研究其早衰机制对提高作物的经济产量具有非常重要的意义。本研究报道了一个来自EMS诱变优良恢复系缙恢10号的新水稻叶尖早衰突变体lad (leaf apex dead),其叶尖在第5片叶抽出前呈正常状态,当第5叶完全抽出之后前5叶的叶尖变黄并最终枯死;随后的叶子在完全抽出后,叶尖也逐渐变黄并枯死。对该突变体的生理生化分析发现,其叶绿素含量、可溶性蛋白含量明显下降,SOD酶活性异常。其株高、叶长、粒数等也都显著降低。经遗传分析,该突变性状受一对隐性单基因控制,利用分子标记将该基因定位于第11染色体SSR标记SWU11-19和SWU11-5之间,遗传距离为13 cM,并且与SSR标记SWU11-25和SWU11-27共分离。本研究结果为该基因的进一步克隆和功能研究奠定了良好基础。

关键词: 水稻, 叶尖早衰死亡, 基因定位, 表型分析, 生理分析

Abstract: Leaf plays an important role in photosynthesis. Studying the leaf premature senescence is important for increasing the economic yield of crop. A new mutant of rice leaf apex dead reported in the paper derived from a restorer line Jinhui10 treated by EMS. In the mutant, the leaf apexes appeared normal before the 5th leaf unfolded. However, the leaf apexes of all leaves except the 5th leaf exhibited yellow and gradually died when the 5th leaf fully expanded; and afterwards the apexes of new fully expanded leaves became yellow and dead. The physiological and biochemical analysis showed that the lad mutant contained lower contents of chlorophyll and soluble protein compared with the wild type control, and the activity of SOD was abnormal. Again, the plant height, leaf length, grain number and seed setting rate of the lad mutant were significantly lower than those of the control. Thepremature senescence mutant was controlled by a single recessive nuclear gene. And the LAD gene was mapped between the SSR markers SWU11-19 and SWU11-5 on the 11th chromosome, with 13 cM of the genetic distance. Furthermore, the LAD gene was co-segregated with the markers SWU11-25 and SWU11-27. The results laid a favorable foundation for further map-based cloning and functional analysis of the LAD gene.

Key words: Rice, Leaf apex dead, Gene mapping, Phenotypic analysis, Physiologic analysis

[1]Yoshida S. Molecular regulation of leaf senescence. Plant Boil, 2003, 6: 79–84
[2]Nam H G. The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol, 1997, 8: 200–207
[3]Duan J(段俊), Liang C-Y(梁成邺), Huang Y-W(黄毓文). Studies on leaf Senescence of hybrid rice at flowering and grain formation stage. Acta Physiol Sin, 1997, 23(2): 139–144 (in Chinese with English abstract)
[4]Doelling J H, Walker J M, Friedman E M, Thompson A R, Vierstra R D. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and in Arabidopsis thaliana. J Biol Chem, 2002, 277: 33105–33114
[5]Hanaka H, Takashi N, Yumiko S, Tomohiko K, Hiroaki H, Daisuke S, Satoshi T, Yoshinori O. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 2002, 129: 1181–1193
[6]Yoshida S, Ito M, Nishida I, Watanabe A. Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogendefence responses in Arabidopsis thaliana. Plant J, 2002, 29: 427–437
[7]Jing H C, Sturre M J G, Hille J, Dijkwel P P. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J, 2002, 32: 51–63
[8]Gribic V, Bleecker A B. Ethylene regulates the tinming of leaf senescence in Arabidopsis. Plant, 1995, 8: 595–602
[9]Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J, 1997, 12: 527–535
[10]Woo H R, Goh C H, Park J H, de la Serve B T, Kim J H, Park Y I, Nam H G. Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J, 2002, 31: 331–340
[11]Woo H R, Chung K M, Park J H, Oh S A, Ahn T, Hong S H, Jang S K, Nam H G. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell, 2001, 13: 1779–1790
[12]Wang J, Wu S J, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992
[13]Li F Z, Hu G C, Fu Y P, Si H M, Sun Z X. Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice(Oryza sativa L.). Genome, 2006, 48: 738–746
[14]Zhu L, Liu W Z, Wu C, Luan W J, Fu Y P, Hu G C, Si H M, Sun Z X. Identification and fine mapping of a gene related to pale green leaf phenotype near centromere region in rice (Oryza sativa). Rice Sci, 2007, 14: 172–180
[15]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and gene mapping of dominant presenescing leaf gene PSL3 in rice (Oryza sativa). Chin Sci Bull, 2010, 55(23): 2517–2521
[16]Liang J-S(梁建生), Cao X-Z(曹显祖). Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. J Jiangsu Agric Coll (江苏农学院学报), 1993, 14(4): 25–30 (in Chinese with English abstract)
[17]Aenon D I. Copper enzymes in isolated chloroplasts: polyphenol oxidase in beta vulgaris. Plant Physiol, 1949, 24: 1–15
[18]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313
[19]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76
[20]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)
[21]Luo Z K, Yang Z L, Zhong B Q, Li Y F, Xie R, Zhao F M, Ling Y H, He G H. Genetic analysis and fine mapping of a dynamic rolled leaf gene (RL10(t)) in rice (Oryza sativa L.). Genome, 2007, 50: 811–817
[22]Christine H F, Vanacker H, Leonardo D G, Jeremy H. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal chilling temperatures: review. Plant Physiol Biochem, 2002, 40: 659–668
[23]Guo P-G(郭培国), Li M-Q(李明启). Studies on photosynthetic characteristics in rice hybrid progenies and their parents: I. Chlorophyll content, chlorophyll-protein complex and chlorophyll fluorescence kinetics. J Trop Subtrop Bot (热带亚热带植物学报), 1996, 4(4): 60–65 (in Chinese with English abstract)
[24]Biswas A K, Choudhuri M A. Mechanism of monocarpic senescence in rice. Plant Physiol, 1980, 65: 340–345
[25]Quirino B F, Noh Y S, Himelblau E, Amasino R M. Molecular aspects of leaf senescence. Trends Plant Sic, 2000, 5: 278–282
[26]Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, at WRKY6, is associated with both senescence and defense-related processes. Plant J, 2001, 28: 123–133
[27]Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis thaliana. Plant Mol Biol, 2004, 55: 853–867
[28]Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209
[29]Lee R H, Wang C H, Huang L T, Chen S C G. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot, 2001, 52: 1117–1121
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!