欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 563-569.doi: 10.3724/SP.J.1006.2012.00563

• 研究简报 • 上一篇    

油菜角果开裂区结构分化对果实开裂的作用

王婷,暨淑仪,吴鸿*   

  1. 华南农业大学生命科学学院 / 农业生物资源保护与利用国家重点实验室, 广东广州 510642
  • 收稿日期:2011-08-15 修回日期:2011-12-15 出版日期:2012-03-12 网络出版日期:2012-01-04
  • 通讯作者: 吴鸿, E-mail: wh@scau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31070159)资助。

Effect of Structural Differentiation of Fruit Dehiscence Zone on Pod Dehiscence in Oilseed Rape

WANG Ting, JI Shu-Yi,WU Hong*   

  1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
  • Received:2011-08-15 Revised:2011-12-15 Published:2012-03-12 Published online:2012-01-04
  • Contact: 吴鸿, E-mail: wh@scau.edu.cn

摘要: 运用半薄切片技术、荧光显微镜技术, 观察不同开裂程度的两个油菜品种中双9号和中双11果实发育过程中“果实开裂区”的结构特征、发生发育规律, 探讨两品种油菜果实不同开裂程度的结构差异。结果表明, 油菜果实在发育过程中, 逐渐分化出由胎座框木化细胞、离区细胞、果瓣边缘木化细胞、紧靠果实内果皮的木化层enb细胞共同组成的开裂区; 易开裂的中双9号果实发育进程总体上比不易开裂中双11的早, 前者在15DAF (开花后第15天)时就已经能分辨出离区, 且胎座框细胞、果瓣边缘细胞、enb层细胞的壁都已经木化加厚, 而后者在25DAF才表现出这些特征;中双9号的离区在25DAF完全形成, 而中双11的离区在30DAF完全形成;中双9号离区部分细胞间在30DAF开始出现分离, 而中双11离区部分细胞间在35DAF开始出现分离。另外, 中双9号开裂区胎座框木化细胞间出现较多的裂缝有利于果实的开裂。这些结构和发育特征对于深入研究果实开裂的分子调控和抗角果开裂品种的选育具有理论指导意义。

关键词: 油菜角果, 开裂区, 分化, 果实开裂

Abstract: Oilseed rape plants disperse their seeds by pod-shattering known as Pod dehiscence, which causes yield loss. To investigate the effect of structure differentiation on pod shattering, we studied the developmental process and structural characteristics of fruit “dehiscence zone” of two varieties with different pod shattering behavior Zhongshuang 9 and Zhongshuang 11, by semi-thin section fluorescence microscopy with. Our observations revealed that: (1) rape pod gradually differentiated to form “dehiscence zone” in fruit development, which was composed of dehiscence zone (or separation layer), lignified valve edge, lignified endocarp b and replum cells; (2) The dehiscence zone of Zhongshuang 9 was found at 15DAF (day after flowering), and meanwhile the walls of valve edge cells, endocarp b cells and replum cells were thickened, and that of Zhongshuang 11 did not show these features until 25DAF. The dehiscence zone was fully formed in Zhongshuang 9 at 25DAF, while in Zhongshuang 11 at 30DAF.The separation of dehiscence zone cells was observed at 30DAF in Zhongshuang 9, while this occurred in 35DAF for Zhongshuang 11. In addition, more cell separation sites occurring between lignified replum cells enhanced pod shattering in Zhongshuang 9. These results provide a theoretical guidance for molecular regulation of pod shattering and oilseed rape breeding for pod shattering-resistance.

Key words: Brassica napus pod, Dehiscence zone, Differentiation, Fruit shatter

[1]Kadkol G P, Macmillan R H, Burrow R P, Halloran G M. Evaluation of Brassica genotypes for resistance to shatter: I. Development of a laboratory test. Euphytica, 1984, 33: 63–73

[2]Price J S, Hobson R N, Neale M A, Bruce D M. Seed losses in commercial harvesting of oilseed rape. J Agric Eng Res, 1996, 65: 183–191

[3]Morgan C L, Bruce D M, Child R, Ladbrookea Z L, Arthur A E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res, 1998, 58: 153–165

[4]Child R, Huttly A. Anatomical variation in the dehiscence zone of oilseed rape pods and its relevance to pod shatter. In: Proceedings of 10th International Rape Seed Congress, Canberra, Australia, 1999

[5]Liu X(柳絮). The born of super rape new variety Zhongshuang 11. Guangxi Agric Acta (广西农学报), 2009, (4): 17 (in Chinese)

[6]Meakin P J, Roberts J A. Dehiscence of fruit in oilseed rape (Brassica napus.). Anatomy of pod dehiscence. J Exp Bot, 1990, 41: 995–1002

[7]Li H-Z(李会珍), Zhang Z-J(张志军), Tang G-X(唐桂香), Zhang G-Q(张国庆), Zhou W-J(周伟军). Research progress on the pod shatter resistance of Brassica napus. Chin J Oil Crop Sci (中国油料作物学报), 2003, 25(1): 89–91 (in Chinese with English abstract)

[8]Roeder A H K, Ferrándiz C, Yanofsky M F. The role of the REPLUMLESS homeo-domain protein in patterning the Arabidopsis fruit. Curr Biol, 2003, 13: 1630–1635

[9]Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S. Modulating flowering time and prevention of pod shatter in oilseed rape. Mol Breed, 2005, 15: 87–94

[10]Wu H, Aiko Mori, Jiang X S, Wang Y X, Yang M. The INDEHISCENT protein regulates unequal cell divisions in Arabidopsis fruit. Planta, 2006, 244: 971–979

[11]Spence J, Vercher Y, Gates P, Harris N. ‘Pod shatter’ in Arabidopsis thaliana, Brassica napus and B. juncea. J Microscope, 1996, 181: 195–203

[12]Ferrándiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 2000, 289: 436–438

[13]Liljegren S J, Ditta G S, Eshed Y, Savidge B, BowmanJ L, Yanofsky M F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000, 404: 766–770

[14]Rajani S, Sundaresan V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol, 2001, 11: 1914–1922

[15]Liljegren S J, Roeder A H K, Kempin S A, Gremski K, Østergaard L, Guimil S, Reyes D K, Yanofsky M F. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell, 2004, 116: 843–853

[16]Dinneny J R, Weigel D, Yanofsky M F. Genetic framework for fruit patterning in Arabidopsis thaliana. Development, 2005, 132: 4687–4696

[17]Ostergaard L, Kempin S A, Bies D, Klee H J, Yanofsky M F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4: 45–51

[18]Kadkol G P, Beilharz V C, Halloran G M, Macmillan R H. Anatomical basis of shatter-resistance in the oilseed Brassicas. Aust J Bot, 1986, 34: 595–601

[19]Srinivas T, Bhashyam M K, Desikachar H S R. Histological peculiarities of the region of attachment of grain stalk associated with the shedding quality of rice. Indian J Agric Sci, 1979, 49:78–81

[20]Gladstones J S. Selection for economic characters in Lupinus angustifolius and L. digitatus: 1. Non-shattering pods. Aust J Exp Agric Anim Husbandry, 1967, 7: 360–366

[21]Zohary M. Carpological studies in Cruciferae. Palestine J Bot, 1948, 4: 158–165

[22]Kadkol G. Brassica shatter-resistance research update. In: 16th Australian Research Assembly on Brassicas. Ballarat Victoria, 2009

[23]Josefsson E. Investigations into shattering resistance of cruciferous crops. Zeitschrift fur Pflanzensuchtung, 1968, 59: 384–396
[1] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[2] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[3] 李新,肖麓,李麟芳,杜德志. 芥菜型多室与二室油菜花芽分化过程的比较分析[J]. 作物学报, 2019, 45(5): 705-713.
[4] 谭炎宁,孙学武,袁定阳,孙志忠,余东,何强,段美娟,邓华凤,袁隆平. 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位[J]. 作物学报, 2015, 41(06): 831-837.
[5] 王翠娟,史春余,王振振,柴沙沙,柳洪鹃,史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响[J]. 作物学报, 2014, 40(09): 1677-1685.
[6] 马海珍,朱伟伟,王启柏,王国良,李新征,亓宝秀. 玉米幼苗不同部位的再生能力和某些影响因子[J]. 作物学报, 2014, 40(02): 313-319.
[7] 孟佳佳,董树亭,石德杨,张海燕. 玉米雌穗分化与籽粒发育及败育的关系[J]. 作物学报, 2013, 39(05): 912-918.
[8] 张美玲, 宋宪亮, 孙学振, 王振林, 赵庆龙, 李宗泰, 姬红, 许晓龙. 彩色棉纤维分化及色素沉积过程观察[J]. 作物学报, 2011, 37(07): 1280-1288.
[9] 周可金,官春云,肖文娜,谭太龙. 催熟剂对油菜角果光合特性、品质及产量的影响[J]. 作物学报, 2009, 35(7): 1369-1373.
[10] 陈军营,马平安,赵一丹,朱雪萍,崔琰,张艳敏,陈新建*. 小麦成熟胚脱分化过程中生长素相关基因的表达分析[J]. 作物学报, 2009, 35(10): 1798-1805.
[11] 许东林;周国辉;沈万宽;邓海华. 侵染甘蔗的高粱花叶病毒遗传多样性分析[J]. 作物学报, 2008, 34(11): 1916-1920.
[12] 马庆;齐璐璐;李晓玉;项艳;朱苏文;程备久. 外源细胞分裂素对玉米叶原基分化类型的调控[J]. 作物学报, 2008, 34(11): 2053-2058.
[13] 马殿荣;李茂柏;王楠;徐正进;陈温福. 中国辽宁省杂草稻遗传多样性及群体分化研究[J]. 作物学报, 2008, 34(03): 403-411.
[14] 韩建明;侯喜林;徐海明;史公军;耿建峰;邓晓辉. 不结球白菜(Brassica campestris ssp. chinensis Makino)种质资源SRAP遗传分化分析[J]. 作物学报, 2007, 33(11): 1862-1868.
[15] 石云鹭;丁在松;张彬;张桂芳;赵明. 影响农杆菌介导旱稻转化效率主要因素的研究[J]. 作物学报, 2007, 33(07): 1135-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!