作物学报 ›› 2012, Vol. 38 ›› Issue (03): 556-562.doi: 10.3724/SP.J.1006.2012.00556
李为喜1,郑床木2,武力1,李欣1,李静梅1,宋敬可1,杨秀兰1,王步军1,*
1 中国农业科学院作物科学研究所 / 农业部谷物品质监督检验测试中心,北京100081;2中国农业科学院农业质量标准与检测技术研究所,北京100081
摘要: 伏马毒素(Fumonisins)是串珠镰刀菌繁殖产生的一类真菌毒素。玉米在生长和储存过程中极易受到伏马毒素的侵染。流行病学研究结果表明,受到伏马毒素污染的玉米及其制品可导致马白脑软化症、猪肺水肿综合症,还可诱发人类食管癌和胎儿神经管畸形等疾病。本研究建立了应用免疫亲和柱净化高效液相色谱测定玉米中伏马毒素B1和B2的方法,同时,运用统计学方法对该法进行了准确性和再现性评价。结果表明,FB1和FB2线性范围分别为0.06~5.00 μg mL-1和0.04~2.50 μg mL-1,回收率分别为76.6%~93.8%和77.9%~93.4%,FB1和FB2方法定量限分别为0.09 mg kg-1、0.06 mg kg-1,实验室内重复性测定的变异系数均低于5%,实验室间再现性测定的变异系数低于6%。上述结果说明该方法的线性、准确度、精密度、灵敏度及同一实验室重复性和多家实验室的再现性评价结果优良,适合作为伏马毒素的测定方法。应用该方法对310份玉米进行了伏马毒素的测定,结果表明,大田、存储玉米伏马毒素总量范围分别为0.20~9.06 mg kg-1、0.21~6.10 mg kg-1,建议应加强玉米中伏马毒素污染水平监控,保证人畜健康。
[1]Marasas W F, Kellerman T S, Gelderblom W C. Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. J Vet Res, 1988, 55: 197–203[2]Zomborszky-Kovcs M, Kovcs F, Horn P. Investigations into the time- and dose- dependent effect of fumonisin B1 in order to determine tolerable limit values in pigs. Livest Prod Sci, 2002, 76: 251–256[3]Marasas W F. Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect, 2001, 109:239-243[4]Sun D-Y(孙东亚), Wang X-M (王晓鸣), He Y-Q(何月秋). Molecular detection of Fusarium strains producing fumonisins in maize seeds. Plant Prot (植物保护), 2007, 33(5): 58–63 (in Chinese with English abstract)[5]Radostina M, Rositsa M. Incidence of zearalenone and fumonisins in Bulgarian cereal production. Food Control, 2009, 20: 362-365[6]Liliana S, Monica F F, Guillermina F. Analysis of fumonisins in corn-based food by liquid chromatography with fluorescence and mass spectrometry detectors. Food Chem, 2009, 112: 1031–1037[7]Seyed A G, Seyed M R, Parivashi K B. Fumonisin production by fusarium species isolated from freshly harvested corn in Iran. Mycopathologia, 2005, 159: 31–40[8]Jin H-T(金海涛), Chen D-F(陈道付), Li S-Y(李绍钰). Study on fumonisin toxicity. Feed Ind (饲料工业), 2007, 28(20): 55–63 (in Chinese)[9]Shephard G S, Sewram V. Determination of the mycotoxin fumonisin B1 in maize by reversed-phase thin-layer chromatography: a collaborative study. Food Add Contam, 2004, 21: 498–505[10]Ewald U, Margit S, Gerhard T. Preparation and characterization of anti-fumonisin monoclonal antibodies. Biosci Biotech Biochem, 1994, 58: 765–767[11]Wang Z-G(王志刚), Li X-F(李秀芳),Tong Z(童哲), Cheng S-Y(程苏云), Gao W-J(高雯洁), Zhu X-F(朱小芳), Feng J-F(冯济富), Cai H-S(蔡海生). Correlation study between fumonisin contamination and generate-sources in foodstuffs. Chin J Health Lab Technol (中国卫生检验杂志), 2001, 11(1): 9–13 (in Chinese with English abstract)[12]Plattner R D, Weisleder D, Shackelford D D. A new fumonisin from solid cultures of Fusarium moniliforme. Mycopathologia, 1992, 117: 23-28[13]Zhang H(张浩), Hou H-M(侯红漫), Liu Y(刘阳), Chen L(陈莉), Zhao P(赵鹏). Review on determination of fumonisin mycotoxin. J Chin Cereals Oils Assoc (中国粮油学报), 2007, 22(4):137–142 (in Chinese with English abstract)[14]Jiang Z-G(蒋子刚), Gu X-M(顾雪梅). Statistics and Quality Assurance in Analytical Testing (分析测试中的数理统计与质量保证). Shanghai: East China University of Science and Technology Press, 1991. pp 159–167 (in Chinese)[15]Yu Z-F(于振凡), Feng S-Y(冯士雍), Liu W(刘文), Jiang J(姜健), Ding W-X(丁文兴), Wang D-W(王斗文), Xiao H(肖惠), Li C-M(李成明). GB/T 6379.2-2004 Accuracy (Trueness and Precision) of Measurement Methods and Results Part2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method [测量方法与结果的准确度(正确度与精密度)第2部分:确定标准测量方法重复性与再现性的基本方法]. Beijing: Standards Press of China, 2004. pp 1–46 (in Chinese)[16]Massimo B, Amedeo R, Gianni C. Comparison of integrated field programmes for the reduction of fumonisin contamination in maize kernels. Field Crops Res, 2009, 111: 284–289[17]Liu Q-F(柳其芳),Liu G-H(刘桂华),Liu H-H(刘红河). Investigation into the status of contamination of fumonisins in peanut and corn and their products and rapid detection. China Trop Med (中国热带医学), 2008, 8(11): 1906–1908 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|