欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 951-960.doi: 10.3724/SP.J.1006.2013.00951

• 综述 •    下一篇

化感水稻抑草作用的根际生物学特性与研究展望

林文雄   

  1. 福建农林大学农业生态研究所,福建福州350002
  • 收稿日期:2012-11-08 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 通讯作者: 林文雄, E-mail: wenxiong181@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31271670, 31070447, 31070403, 30471028),福建省自然科学基金项目(2009J05045, 2010J05045, 2011J05045)和福建省教育厅A类科技项目(JA11087)资助。

Rhizobiological Properties of Allelopathic Rice in Suppression of Weeds and Its Research Prospect

LIN Wen-Xiong   

  1. Institute of Agroecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2012-11-08 Revised:2013-01-15 Published:2013-06-12 Published online:2013-03-22
  • Contact: 林文雄, E-mail: wenxiong181@163.com

摘要:

当前水稻化感作用研究主要集中在其遗传生理与分子生态特性和水稻化感物质的分离鉴定及其抑草作用的根际生物学过程与机制两方面。水稻化感作用是个可遗传的数量性状,控制该性状的QTL主要定位在第2、第3、第8、第9、第10染色体上,并存在显著的QTL上位性作用及其与环境的互作效应,但未见控制化感作用性状的QTL遗传信息与何种化感物质的产生紧密相关的研究报道。从现有水稻化感物质的分离鉴定结果看,水稻化感物质可分为三大类,即酚酸类、萜类和黄酮类物质。这三类物质对靶标植物(稗草)均有抑制作用,但酚酸类物质起化感抑草作用的有效浓度较另两类物质的高,且从土壤中检测到的浓度比室内测定的化感抑草作用有效浓度低得多。因此,酚酸类物质是否是一类化感物质经常遭到一些学者的质疑。然而,也有研究结果表明,逆境引起的水稻化感作用潜力增强与其合成酚酸类物质的基因表达增强以及所合成的该类物质分泌释放到根际土壤中的量增多有关。当抑制化感水稻的PAL-2-1基因表达后,其酚酸类物质含量降低,根际微生物数量也随之减少,其中黏细菌属的细菌丰度明显降低,化感抑草效果下降,因而认为在田间条件下化感水稻PAL-2-1基因调控其酚酸类物质合成,经根系分泌进入根际土壤后引起根际特异微生物的趋化性聚集,在这一过程中,释放的根系分泌物可能被土壤中存在的多样性微生物所降解,从而降低其在土壤中的浓度,但正是通过土壤微生物的降解与转化作用,引发了化感物质与根际微生物的藕合效应,并由此产生了水稻化感抑草现象。因此,深入研究这一根际生物学过程对于最终揭示水稻化感作用机理有着极其重要的理论与实际意义。

关键词: 化感作用, 根际生物学特性, 水稻, 特异微生物

Abstract:

Two reviewed areas of the research include the genetic physiological and molecular ecological characteristics, and the allelochemical identification, rhizospheric biological process and mechanism of rice allelopathy. As a quantitative trait, the allelopathy is mediated by both genetic and environmental factors. QTLs for allelopathy are found mainly on chromosomes 2, 3, 8, 9, and 10 significantly interacting with the additive×additive epistatic effects and the environment. However, no relevant study has been reported concerning the correlation between the QTL genetics and allelochemical synthesis. Phenolic acids, terpenoids and flavonoids have been identified in laboratory to be the metabolites showing allelopathic potentials on the target weed (barnyardgrass). Since a concentration higher than what is normally required to exhibit the allelopathic effect in rice rhizospheric soils for phenolic acids, some researchers questioned its association with the allelopathy. On the other hand, our studies indicated that the rice allelopathic potential was enhanced under stress from the increased phenolic acids in soil. Furthermore, the gene expression of phenylalanine ammonia-lyase (PAL-2-1) in the allelopathic rice, PI312777, was inhibited by the RNA interference (RNAi). The transgenic rice showed decreases in the phenolic acid concentration and the rhizospheric bacterial diversity as compared with its wild type (WT), especially for myxobacterium, whose population was significantly lowered. The results suggested that the phenolic acids might be regulated by PAL-2-1 gene, and then be released into the soil resulting in the chemotactic aggregation of the rhizosphere characteristic microbes. Some species of microorganisms with vast diversity existing in soil could conceivably degrade plant root exudates leaving little allelochemicals to be detected. The degradation and transformation by the rhizosphere microorganisms might have a coupling effect with the allelochemicals to result in the crop’s allelopathic effect on weeds as observed. Consequently, studying the rhizospheric biological process could eventually reveal the detailed mechanism of the rice allelopathy.

Key words: Allelopathy, Rhizobiological properties, Rice, Special microorganism

[1]Lin W X, Fang C X, Chen T, Lin R Y, Xiong J, Wang H B. Rice allelopathy and its properties of molecular ecology. Front Biol, 2010, 5: 255–262



[2]Duke S O. Allelopathy: Current status of research and future of the discipline: a commentary. Allelopathy J, 2010, 25: 17–30



[3]Dilday R H, Nastasi P, Smith R J Jr. Allelopathic observation in rice (Oryza sativa L.) to ducksalad (Heteranthera limosa). Proc Arkansas Acad Sci, 1989, 43: 21–22



[4]Gealy D, Moldenhauer K, Duke S. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis. J Chem Ecol, 2013, 39: DOI: 10.1007/s10886-013-0246-7



[5]Kato-Noguchi H,Peters R. The role of momilactones in rice allelopathy, J Chem Ecol, 2013, 39: DOI: 10.1007/s10886-013-0236-9



[6]Olofsdotter M. Rice: A step toward use of allelopathy. Agron J, 2001, 93: 3–8



[7]Hassan S M, Aidy I R, Bastawisi A O. Weed management using allelopathic rice varieties in Egypt. In: Olofsdotter M ed. Allelopathy in Rice. Proceedings of Workshop on Allelopathy in Rice. Manila (Phhilippines): IRRI, 1998. pp 27–37



[8]Kim K U, Shin D H, Lee I J, Kim H Y. Rice allelopathy in Korea. In: Kim K U, Shin D H, eds. Rice Allelopathy. Proceedings of the Workshop in Rice Allelopathy. Taegu (Korea): Kyungpook National University, 2000. pp 57–82



[9]Olofsdotter M, Navarez D, Moody K. Allelopathic potential in rice (Oryza sativa) germplasm. Ann Appl Biol, 1995, 127: 543–560



[10]Navarez D, Olofsdotter M. Relay seeding technique for screening for allelopathic rice (Oryza sativa L.). In: Brown H, Cussans G W, Devine M D, Duke S O, Fernandez-Quantilla C, Helweg A, eds. Proceedings of the Second International Weed Control Congress. Copenhagen, Denmark, 1996. pp 1285–1290



[11]Shen L-H(沈荔花), Liang Y-Y(梁义元), He H-Q(何华勤), He J(何俊), Liang K-J(梁康迳), Lin W-X(林文雄). Evaluation efficiency of different bioassay methods on allelopathic potential of Oryza sativa. Chin J Appl Ecol (应用生态学报), 2004, 15(9): 1575–1579 (in Chinese with English abstract)



[12]Wang D-L(王大力), Ma R-X(马瑞霞), Liu X-F(刘秀芬). A preliminary studying on rice allelopathy germplasm. Sci Agric Sin (中国农业科学), 2000, 33(3): 94–96 (in Chinese with English abstract)



[13]Xu Z-H(徐正浩), Yu L-Q(余柳青). Ecological control of barnyardgrass by different morphological type rice. Chin J Rice Sci (中国水稻科学), 2000, 14(3): 125–128 (in Chinese with English abstract)



[14]Olofsdotter M. Weed suppressing rice cultivars—Does allelopathy play a role? Weed Res, 1999, 39: 441–454



[15]Olofsdotter M, Jensen L B, Courtois B. Review: Improving crop competitive ability using allelopathy—an example from rice. Plant Breed, 2002, 121: 1–9



[16]Lin W-X(林文雄), He H-Q(何华勤), Dong Z-H(董章杭), Shen L-H(沈荔花), Duo Y-C(郭玉春), Liang Y-Y(梁义元), Chen F-Y(陈芳育), Liang K-J(梁康迳). Study on developmental inheritance of allelopathy in rice (Oryza sativa L.) under different environment. Acta Agron Sin (作物学报), 2004, 30(4): 348–353 (in Chinese with English abstract)



[17]Xu Z-H(徐正浩), Guo D-P(郭得平), Yu L-Q(余柳青), Zhao M(赵明), Zhang X(张旭), Li D(李迪), Zheng K-L(郑康乐), Ye Y-L(叶元林). Molecular biological study on the action mechanism of rice allelochemicals against weeds. Chin J Appl Ecol (应用生态学报), 2003, 14(5): 829–833 (in Chinese with English abstract)



[18]Wang H-B(王海斌), Yu Z-M(俞振明), He H-B(何海斌), Guo X-K(郭徐魁), Huang J-W(黄锦文), Zhou Y(周阳), Xu Z-B(徐志斌), Lin W-X(林文雄). Relationship between allelopathic potential and grain yield of different allelopathic rice accessions. Chin J Eco-Agric (中国生态农业学报), 2012, 20(1): 75–79 (in Chinese with English abstact)



[19]Mallik A U. Challenge and opportunity in allelopathy research: a brief over review. J Chem Ecol, 2000, 26: 10–14



[20]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910



[21]Dilday R H, Yan W G, Moldenhauer K A K. Allelopathic Activity in rice for controlling major aquatic weeds. Manila (Phhilippines): IRRI, 1998. pp 7–26



[22]Dilday R H, Mattice J D, Moldenhauer K A. An overview of rice allelopathy in the USA. In: Kim K U, Shin D H, eds. Rice Allelopathy. Proceedings of the Workshop in Rice Allelopathy. Taegu (Korea): Kyungpook National University, 2000. pp 15–26



[23]Dilday R H, Nastasi P, Smith R J J. Allelopathic activity in rice (Oryza sativa L.) against ducksalad (Heteranthera limosa). USDA, Washington, DC, 1991. pp 193–201



[24]Jensen L B, Courtois B, Shin L S, Li Z K, Olofsdotter M, Mauleon R P. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J, 2001, 93: 21–26



[25]Jensen L B, Olofsdotter M. Genetic control of allelopathyin rice (Oryza sativa L.) research. In: Kim K U, ed. Rice Allelopathy. Korea: Taegu Ililsa Press, 2000. pp 27–40



[26]Ebana K, Yan W G, Dilday R, Namai H, Okuno K. Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breed Sci, 2001, 51: 47–51



[27]Xu Z-H(徐正浩), He Y(何勇), Cui S-R(崔绍荣), Zhao M(赵明), Zhang X(张旭), Li D(李迪). Genes mapping on rice allelopathy against barnyardgrass. Chin J Appl Ecol (应用生态学报), 2003, 14(12): 2258–2260 (in Chinese with English abstact)



[28]Zeng D L, Qian Q, Teng S, Dong G J, Fujimoto H, Yasufumi K, Zhu L H.Genetic analysis of rice allelopathy. Chin Sci Bull, 2003, 48: 265–268



[29]Lee S B, Seo K I, Koo J H, Hur H S, Shin J C. QTLs and molecular markers associated with rice allelopathy. In: Haper J D I, An M, Kent J H, eds. Proceedingss of the Fourth World Congress on Allelopathy “Establishing the scientific base”. Australia: Charles Sturt Universit, Wagga Wagga, NSW, 2005. pp 505–507



[30]Xiong J, Jia X L, Deng J Y, Jiang B Y, He H B, Lin W X. Analysis of epistatic effect and QTL interactions with environment for allelopathy in rice (Oryza sativa L.). Allelopathy J, 2007, 20: 259–268



[31]He H Q, Shen L H, Xiong J, Jia X L, Lin W X, Wu H. Conditional genetic effect of allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regul, 2004, 44: 211–218



[32]Lin W X, Kim K U, Shin D H. Allelopathic potential in rice (Oryza sativa L.) and its modes of action on barnyardgrass (Echinochloa crusgalli L.). Allelopathy J, 2000, 7: 215–224



[33]Duke S O, Baerson S R, Rimando A M, Pan Z, Dayan F E, Belz R G. Biocontrol of weeds with allelopathy conventional and transgenic approaches. In: Vurro M, Gressel J, eds. Novel biotechnologies for biocontrol agent enhancement and management. Berlin: Springer-Verlag, Heidelberg, 2007. pp 75–85



[34]Kato-Noguchi H, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol Plant, 2002, 115: 401–405



[35]Kato-Noguchi H, Ino T. Rice seedlings release momilactone B into the environment. Phytochemistry, 2003, 63: 551–554



[36]Kato-Noguchi H. Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J Plant Physiol, 2004, 161: 271–276



[37]Kato-Noguchi H. Barnyard grass-induced rice allelopathy and momilactone B. J Plant Physiol, 2011, 168: 1016–1020



[38]Kong C H, Zhao H, Xu X H, Wang P, Gu Y. Activity and allelopathy of soil of flavone O-Glycosides from rice. J Agr Food Chem, 2007, 55: 6007–6012



[39]Kong C H, Wang P, Gu Y, Xu X H, Wang M L. Fate and impact on microorganisms of rice allelochemicals in paddy soil. J Agr Food Chem, 2008, 56: 5043-5049



[40]Kong C H, Li H B, Hu F, Xu X H, Wang P. Allelochemicals released by rice roots and residues in soil. Plant Soil, 2006, 288: 47–56



[41]You L X, Wang P, Kong C H. The levels of jasmonic acid and salicylic acid in a rice-barnyardgrass coexistence system and their relation to rice allelochemicals. Biochem Syst Ecol, 2011, 39: 491–497



[42]Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653



[43]Wang H-B(王海斌), Xiong J(熊君), Fang C-X(方长旬), Qiu L(邱龙), Wu W-X(吴文祥), He H-B(何海斌), Lin W-X(林文雄). FQ-PCR analysis on the differential expression of the key enzyme genes involved in isoprenoid metabolic pathway in allelopathic and weak allelopathic rice accessions (Oryza sativa L.) under nitrogen stress condition. Acta Agron Sin (作物学报), 2007, 33(8): 1329–1334 (in Chinese with English abstact)



[44]Kato-Noguchi H. Convergent or parallel molecular evolution of momilactone A and B: potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J Plant Physiol, 2011, 13: 1511–1516



[45]Seal A N, Pratley J, Ehaig T. Identification and quantification of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol, 2004, 3: 23–27



[46]Rice E L. Allelopathy, 2nd edn. New York: Academic Press, 1984. p 421



[47]Chou C H. The role of allelopathy in phytochemical ecology. In: Chou C H, Waller G R, eds. Allelochemicals and Pheromones. Taipei: Institute of Botany, Academia Sinica, Monograph Series, No. 5, 1989. pp 19–38



[48]Blum U. Allelopathic interactions involving phenolic acids. J Nematology, 1996, 28: 259–267



[49]Blum U, Shafer S R, Lehman M E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit Rev Plant Sci, 1999, 18: 673–693



[50]Ohno T. Oxidation of phenolic acid derivatives by soil and its relevancy to allelopathic activity. J Environ Qual, 2001, 30: 1631–1635



[51]Einhellig F A. Allelopathy: Current Status and Future Goals. Washington DC: American Chemical Society, 1995. pp 1–24



[52]Einhellig F A. Interactions involving allelopathy in cropping systems. Agron J, 1996, 88: 886–893



[53]He H-Q(何华勤), Lin W-X(林文雄), Liang Y-Y(梁义元), Song B-Q(宋碧清), Ke Y-Q(柯玉琴), Guo Y-C(郭玉春), Liang K-J(梁康径). Analyzing the molecular mechanism of crop ailelopathy by using differential proteomics. Acta Ecol Sin (生态学报), 2005, 25(12): 3141–3145 (in Chinese with English abstact)



[54]Shin D H, Kim K U, Sohn D S. Regulation of gene expression related to allelopathy. In: Kim K U, Shin D H, eds. Proceedings of the Workshop in Allelopathy in Rice. Taegu, Korea: Kyungpook National University, 2000. pp 109–124



[55]Kim K U, Shin D H, Lee I J, Kim H Y. Rice allelopathy in Korea. In: Kim K U, Shin D H, eds. Rice Allelopathy. Proceedings of the Workshop in Allelopathy in Rice. Taegu, Korea: Kyungpook National University, 2000. pp 57–82



[56]Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008, 34: 688–695



[57]Xiong J (熊君), Lin W-X(林文雄), Zhou J-J(周军健), Wu M-H(吴敏鸿), Chen X-X(陈祥旭), He H-Q(何华勤),Guo Y-Y(郭玉春), Liang Y-Y(梁义元). Allelopathy and resources competition of rice under different nitrogen supplies. Chin J Appl Ecol (应用生态学报), 2005, 16(5): 885–889 (in Chinese with English abstract)



[58]He H B, Wang H B, Fang C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS ONE, 2012, 7: e37201



[59]Lin W-X(林文雄). Rice Allelopathy (水稻化感作用). Xiamen: Xiamen University Press, 2005 (in Chinese)



[60]Lin W-X(林文雄), He H-B(何海斌), Xiong J(熊君), Shen L-H(沈荔花), Wu M-H(吴敏鸿), Lin R-Y(林瑞余), He H-Q(何华勤), Liang Y-Y(梁义元), Li Z-W(李兆伟), Chen T(陈婷). Advances in the investigation of rice allelopathy and its molecular ecology. Acta Ecol Sin (生态学报), 2006, 26(8): 2687–2694 (in Chinese with English abstact)



[61]Wang H B, HeH B, Ye C Y, Lu J C, Chen R S, Liu C H, Guo X K, Lin W X. Molecular physiological mechanism of increased weed suppression ability of allelopathic rice mediated by low phosphorus stress. Allelopathy J, 2010, 25: 239–248



[62]Wang H B, He H B, Ye C Y, Lu J C, Chen R S, Guo X K, Liu C H, Lin W X. Physiological responses of allelopathic rice accessions to low phosphorus stress. Allelopathy J, 2009, 23: 175-184



[63]Bi H H, Zeng R S, Su L M, An M, Luo S M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol, 2007, 33: 1089–1103



[64]Fang C X, Xiong J, Qiu L, Wang H B, Song B Q, He H B, Lin R Y, Lin W X. Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul, 2009, 57: 163–172



[65]Qiu L(邱龙), Wang H-B(王海斌), Xiong J(熊君), Fang C-X(方长旬), Wu W-X(吴文祥), He H-B(何海斌), Lin W-X(林文雄). Regulation effect of exogenous salicylic acid on weed suppression and molecular physiological characteristics of ailelopathic rice. Chin J Appl Ecol (应用生态学报), 2008, 19(2): 330–336 (in Chinese with English abstact)



[66]Blum U. Plant-plant allelopathic interactions. Phenolic acids, cover crops and weed emergence. Springer Science Business Media, Dordrecht, 2011



[67]Kaur H, Kaur R, Kaur S, Baldwin I T, Inderjit. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE, 2009, 3: e4700



[68]Bais H P, Vepachedu R, Gilroy S, Callaway R M, Vivanco J M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 2003, 301: 1377–1380



[69]Perry L G, Thelen G C, Ridenour W M, Callaway R M, Paschke M W, Vivanco J M. Concentrations of the allelochemical (+/?)-catechinin Centaureamaculosa soils. J Chem Ecol, 2007, 33: 2337–2344



[70]Blair A C, Nissen S J, Brunk G R, Hufbauer R A. A lack of evidence for an ecological role of the putative allelochemical (+/?)-catechin in spotted knapweed invasion success. J Chem Ecol, 2006, 32: 2327–2331



[71]Tharayil N, Bhowmik P, Alpert P, Walker E, Amarasiriwardena D, Xing P. Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol, 2009, 181: 424–434



[72]Bais H P, Walker T S, Stermitz F R, Hufbauer R A, Vivanco J M. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol, 2002, 128: 1173–1179



[73]Bais H P. Corrections and clarifications. Science, 2010, 327: 781



[74]Hoagland L, Carpenter-Boggs L, Reganold J P, Mazzola M. Role of native soil biology in Brassicaceous seed meal-induced weed suppression. Soil Biol Biochem, 2008, 40: 1689–1697



[75]Mazzola M, Reardon C L, Brown J. Initial pythium species composition and brassicaceae seed meal type influence extent of pythium-induced plant growth suppression in soil. Soil Biol Biochem, 2012, 48: 20–27



[76]Gimsing A L, Baelum J, Dayan F E, Locke M A, Sejerø L H, Jacobsen C S. Mineralization of the allelochemical sorgoleone in soil. Chemosphere, 2009, 76: 1041–1047



[77]Barto E K, Cipollini D. Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere, 2009, 76: 71–75



[78]Zhang Z Y, Pan L P, Li H H. Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol, 2010, 108: 1839–1849



[79]Lin R Y, Wang H B, Guo X K, Ye C Y, He H B, Zhou Y, Lin W X. Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils. Allelopathy J, 2011, 28: 225–236



[80]Broz A K, Manter D K, Callaway R M, Paschke M W, Vivanco J M. A molecular approach to understanding plant-plant interactions in the context of invasion biology. Funct Plant Biol, 2008, 35: 1123–1134



[81]Inderjit. Novel weapons hypothesis: an ecologically relevant way to study allelopathy. Proceedings of the 6th World Congress on Allelopathy, Guangzhou, China, 2011. p 9



[82]Weston L. Plant root exudation and rhizodeposition-the role of allelochemicals in the rhizosphere. Proceedings of the 6th World Congress on Allelopathy, Guangzhou, China, 2011. p 5



[83]Blum U. Plant-Plant Allelopathy Interaction. New York: Springer. 2011. pp 1–20



[84]Blum U. Effects of microbial utilization of allelopathic phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol, 1998, 24: 685–708



[85]Inderjit. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil, 2005, 274: 227–236



[86]Schmidt S K, Ley R E. Microbial competition and soil structure limit the expression of phytochemicals in nature. In: Inderjit, Dakshini K M M, Foy C L, eds. Principles and practices in plant ecology: Allelochemical interactions. CRC Press, Boca Raton, FLDalton, 1999. pp 339–351



[87]Kaur H, Inderjit, Keating K I. Do allelochemicals operate independent of substratum factors? In: Inderjit, Mallik A U, eds. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhauser-Verlag AG, Basal, 2002. pp 99–107



[88]Xiong J(熊君), Wang H-B(王海斌), Fang C-X(方长旬), Qiu L(邱龙), Wu W-X(吴文祥), He H-B(何海斌), Lin W-X(林文雄). The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2007, 33(5): 387–394 (in Chinese with English abstact)



[89]Fang C-X(方长旬), Wang Q-S(王清水), Yu Y(余彦), Luo M-R(罗美蓉), Huang L-K(黄力坤), Xiong J(熊君), Shen L-H(沈荔花), Lin W-X(林文雄). Differential expression of PAL multigene family in allelopathic rice and its counterpart exposed to stressful conditions. Aca Ecol Sin (生态学报), 2011, 31(16): 4760–4767 (in Chinese with English abstact)



[90]Fang C X, Zhuang Y E, Xu T C, Li Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol, 2013, 39: DOI: 10.1007/s10886-013-0249-4



[91]Xiong J(熊君), Lin H-F(林辉锋), Li Z-F(李振方), Fang C-X(方长旬), Han Q-D(韩庆典), Lin W-X(林文雄). Analysis of rhizosphere microbial community structure of weak and strong allelopathic rice varieties under dry paddy field. Acta Ecol Sin (生态学报), 2012, 32(19): 6100–6109 (in Chinese with English abstract)



[92]Wang H B, Zhang Z X, Li H, He H B, Fang C X, Zhang A J, Li Q S, Chen R S, Guo X K, Lin H F, Wu L K, Lin S, Chen T, Lin R Y, Peng X X, Lin W X. Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res, 2011, 10: 932–940



[93]Wu L K, Wang H B, Zhang Z X, Lin R, Zhang Z Y, Lin W X. Comparative metaproteomic analysis on consecutively rehmannia glutinosa-monocultured rhizosphere soil. PloS ONE, 2011, 6: e20611



[94]Bode H B, Muller R. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol, 2003, 132: 1153–1161



[95]Gerth K, Pradella S, Perlova O, Beyer S, Müller R. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol, 2003, 106: 233–253



[96]Ward M J, Zusman D R. Motility in Myxococcus xanthus and its role in developmental aggregation. Curr Opin Microbiol, 1999, 2: 624–629



[97]Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol, 2004, 58: 75–98



[98]Kaimer C, Berleman J E, Zusman D R. Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus. Curr Opin Microbiol, 2012, 15: 751–757



[99]Pathak D T, Wei X, Wall D. Myxobacterial tools for social interactions. Res Microbiol, 2012, 163: 579–589



[100]Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 2010, 11: 705–719
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!