欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1619-1627.doi: 10.3724/SP.J.1006.2013.01619

• 耕作栽培·生理生化 • 上一篇    下一篇

不同栽培模式对旱地春玉米光合特性和水分利用率的影响

张仁和,胡富亮,杨晓钦,高杰,郝引川,张兴华*,薛吉全*   

  1. 西北农林科技大学农学院 / 农业部西北旱区玉米生物学与遗传育种国家重点实验室,陕西杨凌712100
  • 收稿日期:2013-02-04 修回日期:2013-06-02 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 通讯作者: 薛吉全, E-mail: xjq2934@163.com; 张兴华, E-mail: zhangxh4569@163.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118604),国家现代农业产业技术体系建设专项(CARS-02-08)和西北农林科技大学创新专项(QN2011086)资助。

Effects of Different Cultivation Patterns on Photosynthetic Characteristics and Water Use Efficiency in Dryland Spring Maize

ZHANG Ren-He,HU Fu-Liang,YANG Xiao-Qin,GAO Jie,HAO Yin-Chuang,ZHANG Xing-Hua*,XUE Ji-Quan*   

  1. College of Agronomy, Northwest A&F University / Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling 712100, China?
  • Received:2013-02-04 Revised:2013-06-02 Published:2013-09-12 Published online:2013-07-09
  • Contact: 薛吉全, E-mail: xjq2934@163.com; 张兴华, E-mail: zhangxh4569@163.com

摘要:

明确旱地春玉米高产与水分高效协调的栽培技术及其生理原因,对提高水分限制条件下玉米水分利用效率及玉米可持续生产具有重要意义。本文以郑单958为材料,于2010年和2011年在陕西长武进行大田试验,设置当地农户栽培(对照)、高产高效栽培、超高产栽培和再高产高效栽培等4种栽培模式,比较了其对春玉米光合特性和水分利用效率的影响。结果表明,当地农户栽培、高产高效栽培、超高产栽培和再高产高效栽培产量平均达7.79.211.710.6 t hm-2,高产模式较对照产量分别提高20.1%52.9%37.7%,水分利用效率分别提高27.8%60.9%45.1%。与当地农户栽培相比,高产高效栽培、超高产栽培和再高产高效栽培提高了花后叶片净光合速率(Pn)、蒸腾速率(Tr)和单叶水分利用效率(WUEL);相对电子传递速率(ETR)PSII实际量子产额(ΦPSII)和光化学猝灭(qP);延缓了叶片衰老花后干物质积累量分别增加29.0%82.3%56.1%。结果说明通过地膜覆盖、增加密度和氮肥运筹等关键栽培技术的集成与优化,可实现旱地春玉米高产与水分高效30%以上的目标;其增产增效的主要原因在于显著增强玉米花后叶片光捕获能力与光化学效率,延缓叶片早衰,促进花后干物质积累及其对籽粒的贡献率。

关键词: 玉米, 栽培模式, 光合特性, 干物质积累与转运, 产量与水分利用效率

Abstract:

Under water-limited conditions, increasing water use efficiency (WUE) is essential for successful maize production. This study aimed at increasing grain yield and WUE through improving crop management. A maize cultivar Zhengdan 958 was planted at Changwu of Shaanxi Province in 2010 and 2011 with four treatments including local farmers’ practice (CK), high-yielding and high efficiency cultivation (HHC), super high yielding cultivation (SHC), and super high yielding and high efficiency cultivation (SHEC). The photosynthetic characteristics and WUE under the different cultivation patterns were analyzed. The results showed that the average yield for CK, HHC, SHC and SHEC was 7.7, 9.2, 11.7, and 10.6 t ha-1, respectively, and 20.1%, 52.9%, and 37.7% higher than that of control. WUE was increased by 27.8%, 60.9%, and 45.1%under HHC, SHC, and SHEC, when compared with local farmers’ practice. Compared with the control, HHC, SHC and SHEC also significantly increased net photosynthetic rate (Pn), transpiration rate (Tr), leaf water use efficiency (WUEL), electron transport rate (ETR), quantum yield (ΦPSII), photochemical quenching (qP) of photo-system II in leaf, delayed the mean decreasing rate of leaf senescence and leaf senescence duration. In addition, the post-anthesis dry matter accumulations were 29.0%, 82.3%, and 56.1% higher in HHC, SHC, and SHEC than in the control. The results indicated that grain yield and WUE could be increased through integrating and optimizing cultivation techniques in maize production, which attributed to the higher photosynthetic rate, delayed leaf senescence at latter growth stages and higher post-anthesis dry matter accumulation and transportation to grains.

Key words: Maize, Cultivation Pattern, Photosynthetic characteristics, Dry matter accumulation and transportation, Yield and WUE

[1]Li F-M(李凤民), Wang J(王静), Zhao S-L(赵松岭). The rainwater harvesting technology approach for dryland agriculture in the semiarid Loess Plateau of China. Acta Ecol Sin (生态学报), 1999, 19(2): 259–264 (in Chinese with English abstract)



[2]Xu H-M(徐洪敏), Zhu L(朱琳), Liu Y(刘毅), Chen X-P(陈新平), Li S-Q(李世清). Nitrogen absorption and allocation of spring maize on Dryland of loess plateau in different farmland water management patterns. Sci Agric Sin (中国农业科学), 2011, 43(14): 2905–2912 (in Chinese with English abstract)



[3]Wang L-M(王丽梅), Li S-Q(李世清), Shao M-A(邵明安). Effects of N and water supply on dry matter and N accumulation and distribution in maize (Zea mays L.) leaf and straw-sheath. Sci Agric Sin (中国农业科学), 2010, 43(13): 2697–2705 (in Chinese with English abstract)



[4]Wang H-L(王红丽), Zhang X-C(张绪成), Song S-Y(宋尚有). Effects of mulching methods on soil water dynamics and corn yield of rain-fed cropland in the semiarid area of China. Chin J Plant Ecol (植物生态学报), 2011, 35(8): 825–833 (in Chinese with English abstract)



[5]Liu C A, Jin S L, Zhou L M, Jia Y, Li F M, Xiong Y C, Li X G. Effects of plastic film mulch and tillage on maize productivity and soil parameters. Eur J Agron, 2009, 31: 241–249



[6]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621



[7]Tokatlidis I S, Has V, Melidisc V, Has I, Mylonas I, Evgenidis G, Copandean A, Ninou E, Fasoula V A. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rain-fed and irrigated conditions. Field Crops Res, 2011, 120: 345–351



[8]Wang X B, Dai K, Zhang D C, Zhang X M, Wang Y, Zhao Q S, Cai D X, Hoogmoed W B, Oennema O. Dyrland maize hybrids and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Res, 2011,120: 47–57



[9]Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Diurnal variation of gas exchange, chlorophyll fluorescence and xanthophylls cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44: 26–31



[10]Wang X B, Cai D X, Hoogmoed W B, Perdok W B Oennema O. Crop residue, manure and fertilizes in dyrland maize under reduced tillage in northern China. I. Grain yields and nutrient use efficiencies. Nutr Cycl Agroecosyst, 2007, 79: 1–16



[11]Gao Q, Li C Q, Feng G Z, Wang J F, Cui Z L, Chen X P, Zhang F S. Romheld V. Understanding yield response to nitrogen to achieve high yield and high nitrogen use efficiency in rainfed corn. Agron J, 2012, 104: 165−168



[12]Li X-L(李向岭), Li C-F(李从锋), Hou Y-H(侯玉虹), Hou H-P(侯海鹏), Ge J-Z(葛均筑), Zhao M(赵明). The summer maize yield performance in different planting dates and its effect of ecological factors. Sci Agric Sin (中国农业科学), 2012, 45(6): 1074–1083 (in Chinese with English abstract)



[13]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Li J-G(李建国), Chen C-Y(陈传永), Sun R(孙锐). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin (作物学报), 2007, 33(4): 612–619 (in Chinese with English abstract)



[14]Li S-K(李少昆), Wang C-T(王崇桃). Innovation and Diffusion of Corn Production Technology (玉米生产技术•创新与扩散). Beijing: Science Press, 2010. pp 1–32 (in Chinese)



[15]Wang Y-J(王永军), Sun Q-Z(孙其专), Yang J-S(杨今胜), Wang K-J(王空军), Dong S-T(董树亭), Yuan C-P(袁翠平), Wang L-C(王立春). Effects of controlled-release urea on yield and photosynthesis characteristics of maize (Zea mays L.) under different soil fertility conditions. Acta Agron Sin (作物学报), 2011, 37(12): 2233−2240 (in Chinese with English abstract)



[16]Dai M-H(戴明宏), Tao H-B(陶洪斌), Wang L-N(王利纳), Wang P(王璞). Effects of different nitrogen managements on dry matter accumulation, partition and transportation of spring maize (Zea mays L.). Acta Agric Boreali-Sin (华北农学报), 2008, 23 (1): 154–157 (in Chinese with English abstract)



[17]Chen X P, Cui Z L, Vitousek P M, Cassman K G, Maston P A, Bai J S, Meng Q F, Hou P, Yue S C, Romheld V. Integrated siol-crop system management for food security. Proc Natl Acad Sci USA, 2011, 108: 6399



[18]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high-yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95−98 (in Chinese with English abstract)



[19]Zhang Y-Q(张玉芹), Yang H-S(杨恒山), Gao J-L(高聚林), Zhang R-F(张瑞富), Wang Z-G(王志刚), Xu S-J(徐寿军), Fan X-Y(范秀艳), Yang S-H(杨升辉). Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin (中国农业科学), 2011, 44(21): 4367–4376(in Chinese with English abstract)



[20]Li G(李耕), Gao H-Y(高辉远), Zhao B(赵斌), Dong S-T(董树亭), Zhang J-W(张吉旺), Yang J-S(杨吉顺), Wang J-F(王敬锋), Liu P(刘鹏). Effects of drought stress on activity of photosynthesis in leaves of maize at grain filling stage. Acta Agron Sin (作物学报), 2009, 35(10): 1916–1922 (in Chinese with English abstract)



[21]Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183-193



[22]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264



[23]Chen X C, Chen F J, Chen Y L, Gao Q, Yang X L, Yuan L X, Zhang F S, Mi G H. Mord maize hybrids in Northeast China exhibit increased yield potential and resource use efficacy despite adverse climate change. Globe Change Biol, 2012, 18: 1–14



[24]Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat: I. Dry matter and nitrogen accumulation to grain. Crop Sci, 1985, 25: 430–435



[25]Song S-Y(宋尚有), Wang Y(王勇), Fan T-L(樊廷录), Gao Y-F (高育锋), Tang X-M(唐小明), Li S-Z(李尚中). Effect of nitrogen fertilizer on grain yield, quality and water use efficiency of corn in dryland of Loess Plateau. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(3): 387–392 (in Chinese with English abstract)



[26]Zhang R-H(张仁和), GuoD-W(郭东伟), Zhang X-H(张兴华), Lu H-D(路海东), Liu J-C(刘建超), Li F-Y(李凤艳), Hao Y-C(郝引川), Xue J-Q(薛吉全). Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agron Sin(作物学报), 2012, 38(10): 1884–1890 (in Chinese with English abstract)



[27]He P, Osaki M, Takebe M, Shinano T. Changes of photosynthetic characteristics in relation to leaf senescence in two maize hybrids with different senescent appearance. Photosynthetica, 2002, 40: 547–552



[28]Su X-H(苏新宏), Zhang X-L(张学林), Wang Q(王群), Li C-H(李潮海). Effects of meteorological factors on grain yield of summer corn under super-high-yield cultivation. J Maize Sci (玉米科学), 2009, 17(1): 105–107 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!