欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2107-2114.doi: 10.3724/SP.J.1006.2013.02107

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

小麦–中间偃麦草隐形渗入系抗白粉病基因pmCH83分子定位

孙翠花1,侯丽媛1,郭慧娟2,张晓军2,*,贾举庆3,李欣2,詹海仙2,畅志坚2,*   

  1. 1 山西大学研究生院,山西太原 030006;2 山西省农业科学院作物科学研究所 / 农业部黄土高原作物基因资源与种质创制重点实验室,山西太原 030031;3 山西农业大学农学院,山西太谷 030801
  • 收稿日期:2013-05-17 修回日期:2013-07-25 出版日期:2013-12-12 网络出版日期:2013-09-29
  • 通讯作者: 畅志坚, E-mail: wrczj@126.com; 张晓军, E-mail: zxjemail@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31171839), 山西省国际科技合作计划项目(2012081006-2; 2013081007), 山西省科技攻关项目(20130311001-5)和山西省回国留学人员科研项目(2012-102)资助。

Molecular Mapping of Powdery Mildew Resistance Gene pmCH83 in a Putative Wheat–Thinopyrum intermedium Cryptic Introgression Line

SUN Cui-Hua1,HOU Li-Yuan1,GUO Hui-Juan2,ZHANG Xiao-Jun2,*,JIA Ju-Qing3,LI Xin2,ZHAN Hai-Xian2,CHANG Zhi-Jian2,*   

  1. 1 Graduate School of Shanxi University, Taiyuan 030006, China; 2 Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, China; 3 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
  • Received:2013-05-17 Revised:2013-07-25 Published:2013-12-12 Published online:2013-09-29
  • Contact: 畅志坚, E-mail: wrczj@126.com; 张晓军, E-mail: zxjemail@163.com

摘要:

小麦新种质CH09W83为八倍体小偃麦TAI7047与高感小麦品种晋太170杂交、回交后代衍生而来的高代选系,在苗期免疫或高抗我国白粉病菌株E09E20E21E23E26Bg1Bg2为定位CH09W83中的抗病基因,将CH09W83与感病亲本杂交和回交,通过对F1F2F2:3BC1代的接种鉴定和遗传分析,证实CH09W83成株期对E09的抗性由1对隐性核基因控制,暂命名为pmCH83采用分离群体分组分析法(bulked segregant analysis, BSA),以658SSR标记对台长29(感病CH09W83F2群体分析发现,抗性基因pmCH83SSR标记Xgpw7272Xwmc652Xgwm251Xgwm193连锁,与两翼邻近标记Xwmc652Xgwm251的遗传距离分别为3.8 cM4.3 cM。利用中国春缺体四体、双端体将pmCH83及其连锁标记定位在4BL染色体上。原位杂交、染色体配对及连锁标记分析结果表明,CH09W83可能是一个小麦与中间偃麦草的隐形异源渗入系。系谱和图谱位置分析表明,pmCH83很可能是来自中间偃麦草一个新的抗白粉病基因。

关键词: 隐形异源渗入, 白粉病抗性, 连锁图谱, 分子标记, GISH

Abstract:

Wheat introgression line CH09W83 is immune or highly resistant to wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2 at seedling stage in China. This line was derived from the cross between wheat–Thinopyrum intermedium line TAI7047 (resistant) and wheat cultivar Jintai 170 (susceptible). To identify the Bgt resistance gene(s) in CH09W83, we developed segregating populations (F2, F2:3, and BC1) by crossing/backcrossing CH09W83 with susceptible wheat parents. The result of genetic analysis showed that the adult resistance to Bgt E09 in CH09W83 was controlled by a single recessive gene, which was tentatively designated as pmCH83. Using the F2 population of Taichang 29 (susceptible) ´ CH09W83 and 658 pairs of SSR primers, four codominant SSR markers, i.e., Xgwm193, Xgwm251, Xwmc652, and Xgpw7272, were identified to be linked with pmCH83 according to bulked segregant analysis, and the genetic distances between the target gene and flanking markers were 4.3 cM to Xgwm251 and 3.8 cM to Xwmc652. Using Chinese Spring nullitetrasomic and ditelosomic lines, pmCH83 was located on chromosomal arm 4BL of wheat. In combination with evidence of bivalent pairing at metaphase I and GISH, CH09W83 is probably a cryptic wheat–Th. intermedium translocation. Based on pedigree analysis and linkage map, we deduced that pmCH83 is a novel Bgt resistance gene originating from Th. intermedium.

Key words: Cryptic alien introgression, Resistance to powdery mildew, Linkage map, Molecular markers, GISH

[1]Yang Z-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-lines resistance against rusts and mildew in China. Acta Agron Sin (作物学报), 1994, 20(4): 385–394 (in Chinese with English abstract)



[2]Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403



[3]Xue F(薛飞), Wang C-Y(王长有), Zhang L-H(张丽华), Zhang H(张宏), Li H(李浩), Wang Y-J(王亚娟), Liu X-L(刘新伦), Ji W-Q(吉万全). Chromosome location and molecular mapping of powdery mildew resistance gene PmAS846 originated from wild Emmer (Triticum turgidum var. dicoccoides). Acta Agron Sin (作物学报), 2012, 38(4): 589–595 (in Chinese with English abstract)



[4]Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.): IX. Cultivars, landraces and breeding lines grown in China. Plant Breed, 1997, 116: 233–238



[5]Li Z-S(李振声). Wide Cross in Wheat(小麦远缘杂交). Beijing: Science Press, 1985. pp 52–83 (in Chinese)



[6]Fedak G, Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res. 2005, 109: 360–367



[7]Lin X-H(林小虎), Wang L-M(王黎明), Li X-F(李兴锋), Lu W-H(陆文辉), Zhao F-T(赵逢涛), Li W-C(李文才), Gao J-R(高居荣), Wang H-G(王洪刚). Identification of octoploid Trititrigia and disomic addition line with powdery mildew resistance. Acta Agron Sin (作物学报), 2005, 31(8): 1035–1040 (in Chinese with English abstract)



[8]Liu S B, Wang H G. Characterization of a wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica, 2005, 143: 229–233



[9]He R, Chang Z, Yang Z, Liu Z, Zhan H, Zhang X, Liu J. Inheritance and mapping of a powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173–1180



[10]Luo P, Luo H, Chang Z, Zhang H, Zhang M, Ren Z. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet, 2009, 118: 1059–1064



[11]Chang Z, Zhang X, Yang Z, Zhan H, Li X, Liu C, Zhang C. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147: 304–312



[12]Sheng B-Q(盛宝钦), Duan X-Y(段霞瑜). Modification on the evaluation methods of 0-9 level of powdery mildew infection on wheat. Beijing Agric Sci (北京农业科学), 1991, 9(1): 37–39 (in Chinese)



[13]Sheng B-Q(盛宝钦). Using infection type records the wheat powdery mildew at seedling stage. Plant Protection (植物保护), 1988, 14(1): 49 (in Chinese)



[14]Sharp P J, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet, 1988, 75: 289–290



[15]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas (遗传), 2003, 25(3): 317–321 (in Chinese with English abstract)



[16]Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114



[17]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457–463



[18]Zhu Z-D(朱振东), Zhou R-H(周荣华), Dong Y-C(董玉琛), Jia J-Z(贾继增). Analysis of powdery mildew resistance genes in some tetraploid wheat-Aegilops amphidiploids and their parents. J Plant Genet Resour (植物遗传资源学报), 2003, 4(2): 137–143 (in Chinese with English abstract)



[19]Zhang X Y, Koul A, Petroski R, Ouellet T, Fedak G, Dong Y S, Wang R R C. Molecular verification and characterization of BYDV-resistant germplasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet, 1996, 93: 1033–1039



[20]Chang Z-J(畅志坚). Production and Molecular Cytogenetic Characterization of Several Thinopyrum intermedium-Derived Wheat Germplasm Lines. PhD Dissertation of Sichuan Agricultural University, 1999. pp 13–88 (in Chinese with English abstract)



[21]Qi L, Friebe B, Zhang P, Gill B S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res, 2007, 15: 3–19



[22]Lukaszewski A J, Lapinski B, Rybka K. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res, 2005, 109: 373–377



[23]Kuraparthy V, Sood S, Chhuneja P, Dhaliwal H S, Kaur S, Bowder R L, Gill B S. A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci, 2007, 47: 1995–2003



[24]Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowder R L, Gill B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 2007, 114: 1379–1389



[25]Chen Q, Conner R L, Laroche A, Ahmad F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum-Thinopyrum intermedium hybrids. Theor Appl Genet, 2001, 102: 847–852



[26]Zhang X-Y(张学勇), Dong Y-C(董玉琛), Yang X-M(杨欣明). Cytogenetic research on hybrids of Triticum with both Thinopyrum ponticum and Th. intermedium as well as their derivatives: III. Primary detection of genetic base for introgression of useful genes from the two alien species to wheat. Acta Genet Sin (遗传学报), 1995, 22(3): 217–222 (in Chinese with English abstract)



[27]Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 223–230

[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[4] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[5] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[6] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[7] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[8] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[11] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[12] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[13] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[14] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[15] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!