欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (11): 1999-2007.doi: 10.3724/SP.J.1006.2014.01999

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系

刘立军1,王康君2,卞金龙1,熊溢伟1,陈璐1,王志琴1,杨建昌1,*   

  1. 1 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心,江苏扬州225009;2连云港市农业科学院,江苏连云港222000
  • 收稿日期:2014-07-03 修回日期:2014-09-16 出版日期:2014-11-12 网络出版日期:2014-10-01
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

Differences in Yield Response to Nitrogen Fertilizer among Rice Cultivars and Their Relationship with Root Morphology and Physiology

LIU Li-Jun1,WANG Kang-Jun2,BIAN Jin-Long1,XIONG Yi-Wei1,CHEN Lu1,WANG Zhi-Qin1,YANG Jian-Chang1,*   

  1. 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; 2 Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China Abstract: Yield responses to nitrogen (N) rates in indica rice cultivars Tianyouhuazhan, Liangyoupeijiu a
  • Received:2014-07-03 Revised:2014-09-16 Published:2014-11-12 Published online:2014-10-01

摘要:

以籼稻天优华占、两优培九和粳稻陵香优18、宁粳1号为材料,研究了水稻产量对氮肥的响应。结果表明,水稻产量对施氮量的反应存在明显的品种间差异。上述4个水稻品种在获得最高产量(10.1~10.3 t hm-2)时,天优华占和陵香优18所需施氮量为242.5~255.5 kg hm-2,明显低于两优培九和宁粳1号的327.3~328.0 kg hm-2。天优华占和陵香优18的氮肥农学利用率和氮肥偏生产力均明显高于两优培九和宁粳1号,表明天优华占和陵香优18产量对氮肥的反应较两优培九和宁粳1号敏感。在高产(10.5~10.9 t hm-2)条件下,天优华占和陵香优18主要生育期根系的重量、长度和总吸收表面积低于两优培九和宁粳1号,而根系活跃吸收表面积及其占总吸收表面积的比例、根系伤流量以及根系活力则显著高于两优培九和宁粳1号。上述结果表明,通过栽培措施调控或选用根系活跃吸收表面积、根系伤流量和根系活力高的水稻品种将更有利于降低水稻施氮量和提高产量及氮肥利用效率。

关键词: 水稻品种, 产量, 氮肥利用效率, 根系形态生理

Abstract:

Yield responses to nitrogen (N) rates in indica rice cultivars Tianyouhuazhan, Liangyoupeijiu and japonica rice cultivars Lingxiangyou 18 and Ningjing 1 were investigated and showed significant differences among them. The optimal N rates in Tianyouhuazhan and Lingxiangyou 18 were only 242.5–255.5 kg ha-1, significantly lower than those in Liangyoupeijiu and Ningjing 1 (327.3–328.0 kg ha-1), when the maximum grain yield (10.1–10.3 t ha-1) reached. The agronomic use efficiency and partial factor productivity of N fertilizer were much higher in Tianyouhuazhan and Lingxiangyou 18 than in Liangyoupeijiu and Ningjing 1, indicating that the yield is much more sensitive to N rate in the former two cultivars than in the latter two rice cultivars. Under high-yielding (10.5–10.9 t ha-1) conditions, root dry weight, root length and total root absorbing area at main growth stages were lower, but the root active absorbing area and its ratio to total root absorbing area, root bleeding sap and root activity were higher in Tianyouhuazhan and Lingxiangyou 18 than in Liangyoupeijiu and Ningjing 1. These results suggested that increasing root active absorbing area, root bleeding sap and root activity through the regulation of cultivation or breeding will be much more beneficial to decreasing N rate and increasing grain yield and N use efficiency in rice.

Key words: Rice cultivars, Yield, Nitrogen use efficiency, Root morphology and physiology

[1]FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2013. http://www.fao.org/



[2]Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christiea P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041–3046



[3]Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Tang Q Y, Cui K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustainable Dev, 2010, 30: 649–656



[4]Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47



[5]Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9–18



[6]Xue Y G, Duan H, Liu L J, Wang Z Q, Yang J C, Zhang J H. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013, 53: 271–284



[7]Zhang W F, Dou, Z X, He P, Ju X T, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc Natl Acad Sci USA, 2013, 110: 8375–8380



[8]Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8



[9]Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008–1010



[10]凌启鸿. 水稻高产定量栽培. 北京: 中国农业出版社, 2007



Ling Q H. Theory and Technology of Precise and Quantitative Cultivation in Rice. Beijing: China Agriculture Press, 2007 (in Chinese)



[11]蒋鹏, 黄敏, Ibrahim Md, 曾燕, 夏冰, 施婉菊, 谢小兵, 邹应斌. “三定”栽培对双季超级稻养分吸收积累及氮肥利用率的影响. 作物学报, 2011, 37: 2194–2207



Jiang P, Huang M, Ibrahim Md, Zeng Y, Xia B, Shi W J, Xie X B, Zou Y B. Effects of “Sanding” cultivation method on nutrient uptake and nitrogen use efficiency in double cropping super rice. Acta Agron Sin, 2011, 37: 2194–2207 (in Chinese with English abstract)



[12]钟旭华. 水稻“三控”施肥技术. 北京: 中国农业出版社, 2011



Zhong X H. “Three Controls” Fertilization Technology in Rice. Beijing: China Agriculture Press, 2011 (in Chinese)



[13]De Datta S K, Broadbent F E. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil. Field Crops Res, 1990, 23: 81–92



[14]朴钟泽, 韩龙植, 高熙宗. 水稻不同基因型氮素利用效率差异. 中国水稻科学, 2003, 17: 233–238



Piao Z Z, Han L Z, Gao X Z. Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci, 2003, 17: 233–238 (in Chinese with English abstract)



[15]Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J Plant Nutr, 1995, 3: 487–500



[16]Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crops Res, 2003, 83: 251–260



[17]Inukai Y, Ashikari M, Kitano H. Function of the root system and molecular mechanism of crown root formation in rice. Plant Cell Physiol, 2004, 45(suppl): 17



[18]Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot, 2011, 62: 1399–1409



[19]Khan A L, Hamayun M, Kang S M, Kim Y H, Jung H Y, Lee J H, Lee I J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol, 2012, 12: 2–14



[20]Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45, 1097–1102



[21]Jackson R B, Manwaring J H, Coldwell M M. Rapid physiologically adjustment of roots to localized soil enrichment. Nature, 1990, 344: 58–60



[22]Zhang H M, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279: 407–409



[23]肖新, 杨露露, 邓艳萍, 汪建飞. 水氮耦合对水稻田间氨挥发规律的影响. 农业环境科学学报, 2012, 31: 2066–2071



Xiao X, Yang L L, Deng Y P, Wang J F. Effects of irrigation and nitrogen fertilization on ammonia volatilization in paddy field. J Agro-environ Sci, 2012, 31: 2066–2071 (in Chinese with English abstract)



[24]杨建昌, 王志琴, 朱庆森. 不同土壤水分条件下氮肥对水稻产量的影响及其生理机制. 中国农业科学, 1996, 29(4): 58–66



Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrient on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29(4): 58–66 (in Chinese with English abstract).



[25]萧浪涛, 王三根. 植物生理学实验技术. 北京: 中国农业出版社, 2005. pp 61–62



Xiao L T, Wang S G. Experimental Techniques of Plant Physiology. Beijing: China Agriculture Press, 2005. pp 61–62 (in Chinese)



[26]殷春渊, 杨海霞, 杜彦修, 张静, 李俊周, 孙红正, 彭廷, 赵全志. 水稻不同部位伤流强度的差异及其与籽粒充实的关系. 作物学报, 2013, 39: 153−163



Yin C Y, Yang H X, Du Y X, Zhang J, Li J Z, Sun H Z, Peng T, Zhao Q Z. Difference of bleeding intensity in different parts of rice plant and its relationship with grain plumpness. Acta Agron Sin, 2013, 39: 153–163 (in Chinese with English abstract)



[27]汪棋祥, 杨明方, 王子明, 钱永祥. 中粳稻新品种武育粳3号的选育及其利用. 江苏农业科学, 1993, (3): 8–10



Wang Q X, Yang M F, Wang Z M, Qian Y X. The selecting and utilizing of new mid-maturity japonica rice cultivar Wuyujing 3. Jiangsu Agric Sci, 1993, (3): 8–10 (in Chinese)



[28]申义珍, 张正林, 钱晓晴. 高产水稻的氮素营养特点与施肥. 土壤通报, 1994, 25(2): 78–80



Shen Y Z, Zhang Z L, Qian Z Q. The characteristics of nitrogen nutrition in high-yielding rice and fertilization. Chin J Soil Sci, 1994, 25(2): 78–80 (in Chinese)



[29]裘凌沧, 潘军, 许德海. 氮肥水平对威优35稻谷产量和糙米无机元素含量的影响. 浙江农业学报, 1991, 3(1): 5–8



Qiu L C, Pan J, Xu D H. Effects of different nitrogen levels on grain yield and in organic elements content in straw and brown rice of early hybrid rice Weiyou 35. Acta Agric Zhejiangensis, 1991, 3(1): 5–8 (in Chinese with English abstract)



[30]柳金来, 宋继娟, 李福林, 刘荣清. 氮肥施用量对水田土壤肥力和水稻植株养分含量及产量的影响. 农业与技术, 2000, 20(4): 8–12



Liu J L, Song J J, Li F L, Liu R Q. Effect on applying nitrogenous fertilizer quantity to soil fertility in paddle field content of nutrient in rice plant and yields. Agric Technol, 2000, 20(4): 8–12 (in Chinese with English abstract)



[31]张静兰. 氮素营养对水稻生长、产量和碳氮代谢的影响. 植物学报, 1964, (3): 75–81



Zhang J L. The effects of nitrogen nutrition on rice growth, yield and the metabolism of carbon and nitrogen. Bull Bot, 1964, (3): 75–81 (in Chinese)



[32]Murata Y. Studies on the photosynthesis of rice plant. XIII. On the interrelationships between photosynthetic activity of the leaf and physiological activity of the root. Proc Crop Sci Soc Jpn, 1965, 34: 148–153



[33]Lee J H. The role of system of rice plant in relation to the physiological and morphological characteristics of aerial parts, VI. Characteristics of aerial parts and root under different seasonal cultivations. Proc Crop Sci Soc Jpn, 1972, 41: 1–13



[34]凌启鸿, 凌励. 水稻不同层次根系的功能对产量形成作用的研究. 中国农业科学, 1984, 17(5): 3–11



Ling Q H, Ling L. The functions and effects of root system in different layers on yield formation in rice. Sci Agric Sin, 1984, 17 (5): 3–11 (in Chinese with English abstract)



[35]凌启鸿, 陆卫平, 蔡建中. 水稻根系分布与叶角关系研究初报. 作物学报, 1989, 15: 123–131



Ling Q H, Lu W P, Cai J Z. Preliminary studies on the relationship between root distribution and leaf angle in rice. Acta Agron Sin, 1989, 15: 123–131 (in Chinese with English abstract)



[36]Yong K S, Shigenori M, Koou Y. Root growth distribution in some japonica-indica hybrid and japonica type rice cultivars under filed conditions. Jpn J Crop Sci, 1994, 63: 118–124



[37]杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36–46



Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36–46 (in Chinese with English abstract)



[38]Passioura J B. Roots and drought resistance. Agric Water Manag, 1983, 7: 265–280



[39]刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35: 1416–1419



Liu T J, Qi C H, Tang J J. Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin, 2002, 35: 1416–1419 (in Chinese with English abstract)



[40]刘文兆, 李秧秧. 断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题. 西北植物学报, 2003, 23: 1320–1324



Liu W Z, Li Y Y. Effect of crop root-cutting on grain yield and water use efficiency: a review. Acta Bot Boreali-Occident Sin, 2003, 23: 1320–1324 (in Chinese)



[41]汪强, 樊小林, 刘芳, 李方敏, Klaus D, Sattemacher B. 断根和覆草旱作条件下水稻的产量效应. 中国水稻科学, 2004, 18: 437–442



Wang Q, Fan X L, Liu F, Li F M, Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin J Rice Sci, 2004, 18: 437–442 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!