欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 539-547.doi: 10.3724/SP.J.1006.2015.00539

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉Ghkinesin13亚家族基因的克隆及表达特征分析

赵兰杰1,薛飞2,朱守鸿2,李艳军2,刘永昌2*,孙杰2   

  1. 1石河子大学生命科学院,新疆石河子832003; 2石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室,新疆石河子832003
  • 收稿日期:2014-09-18 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-02
  • 通讯作者: 刘永昌, E-mail: liuyongchang2003@126.com, Tel: 18799292449
  • 基金资助:

    本研究由国家自然科学基金项目(31301394)和石河子大学优秀青年科技人才培育计划项目(2012ZRKXYQ-YD10)资助。

Cloning and Expression Analysis of Ghkinesin13 Subfamily Genes in Gossypium hirsutum

ZHAO Lan-Jie1,XUE Fei2,ZHU Shou-Hong2,LI Yan-Jun2,LIU Yong-Chang2,*,SUN Jie2   

  1. 1 College of Life Sciences, Shihezi University, Shihezi 832003, China; 2 Agricultural College of Shihezi University / The Key Laboratory of Oasis Eco-agriculture Xinjiang Production and Construction Group, Shihezi 832003, China
  • Received:2014-09-18 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-02
  • Contact: 刘永昌, E-mail: liuyongchang2003@126.com, Tel: 18799292449

摘要:

Kinesin家族是一类马达蛋白,它们能利用ATP水解所释放的能量驱动自身携带物质分子沿着微管运动,在细胞形成、细胞伸长等方面起着关键作用。本研究以拟南芥Atkinesin13A蛋白序列作为探针序列,利用Blast比对从二倍体雷蒙德氏棉的基因组数据库中发现7个具有较高同源关系的基因。根据基因序列设计引物,利用RT-PCR技术从陆地棉纤维中分离出7个基因。依据7个基因与Atkinesin13AAtkinesin13B的同源性高低,依次将其命名为GhKIS13A1GhKIS13A2GhKIS13A3GhKIS13B1GhKIS13B2GhKIS13B3GhKIS13B4。生物信息学分析表明,7个Ghkinesin13均含有典型的KISC马达区域、ATP结合位点和微管结合位点,其马达区域属于中央马达。多重序列比对和进化树分析发现,这7个基因可被分为2个(Kinesin13AKinesin13B)亚类。实时荧光定量PCR结果表明,7个Ghkinesin13亚家族基因在棉花各组织中均有表达,但表达模式各不相同,其中GhKIS13B4在纤维中优势表达,表明其在纤维发育过程中可能发挥着重要作用。

关键词: 棉花, 纤维, 驱动蛋白, 表达分析

Abstract:

Kinesin family belongs to a class of motor proteins. Kinesins can move along microtubule filaments by using the energy released from ATP hydrolysis, and play key roles during cell formation and cell elongation. Using the protein sequence of Atkinesin13A as a probe, seven genes with high sequence homology were obtained from a genome database of Gossypium raimondii diploid cotton with Blast alignment. These sequences were used to design primers, and then seven genes were isolated from upland cotton fiberusing RT-PCR. Based on the homology level of the seven genes with Atkinesin13A and Atkinesin13B, we designated them as GhKIS13A1, GhKIS13A2, GhKIS13A3, GhKIS13B1, GhKIS13B2, GhKIS13B3, and GhKIS13B4 respectively. Bioinformatic analysis showed that seven proteins contained typical KISC domains including the central motor, ATP-binding sites and microtubule binding sites. Multiple sequence alignment and phylogenetic tree analysis revealed that seven genes can be divided into Kinesin13A and Kinesin13B. The qPCR showed that the seven Ghkinesin13 subfamily genes expressed in all tissues of cotton, but showed different expression patterns. Of the seven genes, only GhKIS13A4 was preferentially expressed in fibers, suggesting that it may play an important role in cotton fiber development. This study can provide a foundation for studying the functions of Ghkinesin13 subfamily genes in fiber development.

Key words: Cotton, Fiber, Kinesin, Expression analysis

[1]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366



[2]Wu A M, Chen L, Liu J Y. Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol, 2006, 163: 426–435



[3]Sun Y, Allen R D. Functional analysis of the BIN2 genes of cotton. Mol Genet Genom, 2005, 274: 51–59



[4]John M E. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol, 1996, 30: 297–306



[5]Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen W, Chua N H. Dissecting Functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiol, 2012, 160: 738–748



[6]Wasteneys G O. Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci, 2002, 115: 1345–1354



[7]Vale R D. The molecular motor toolbox for intracellular transport. Cell, 2003, 112: 467–480



[8]Welburn J P. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken), 2013, 70: 476–493



[9]Schliwa M, Woehlke G. Molecular motors. Nature, 2003, 422: 759–765



[10]Ganguly A, Dixit R. Mechanisms for regulation of plant kinesins. Curr Opin Plant Biol, 2013, 16: 704–709



[11]潘章, 陈静, 耿轶钊, 张辉, 覃静宇, 纪青. 驱动蛋白的研究进展. 生命科学研究, 2012, 16: 350–356



Pan Z, Chen J, Geng Y Z, Zhang H, Qin J Y, Ji Q. Progresses on kinesin superfamily. Life Sci Res, 2012, 16: 350–356 (in Chinese with English abstract)



[12]Lee Y R, Liu B. Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol, 2004, 136: 3877–3883



[13]Guo L, Ho C M, Kong Z, Lee Y R, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot, 2009, 103: 387–402



[14]Richardson D N, Simmons M P, Reddy A S. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genom, 2006, 7: 18



[15]Reddy A S, Day I. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genom, 2001, 2: 2



[16]Preuss M L, Delmer D P, Liu B. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol, 2003, 132: 154–160



[17]Preuss M L, Kovar D R, Lee Y R, Staiger C J, Delmer D P, Liu B. A plant-specific kinesin binds to actin microfilaments and interacts with cortial microtubules in cotton fibers. Plant Physiol, 2004, 136: 3945–3955



[18]Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J, 2009, 421: 171–180



[19]Lu L, Lee Y R, Pan R, Maloof J N, Liu B. An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell, 2005, 16: 811–823



[20]邓祝云, 刘玲童, 李唐, 严长杰, 王台. 水稻SAR1蛋白通过参与细胞微管解聚影响籽粒形状和大小. 2012全国植物生物学大会, p 73



Deng Z Y, Liu L T, Li T, Yan C J, Wang T. The SAR1 protein in rice make an effect on grain size and shape by participating in cell microtubule depolymerization. National Congress of Plant Biology, 2012. p 73 (in Chinese)



[21]Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol, 2010, 51: 1315–1329



[22]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167



Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci, 2003, 15: 166–167(in Chinese with English abstract)



[23]Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol, 2005, 15: 467–476



[24]Li J, Xu Y, Chong K. The novel functions of kinesin motor proteins in plants. Protoplasm, 2012, 249: 95–100



[25]Wei L, Liu B, Li Y. Distribution of a kinesin-related protein on Golgi apparatus of tobacco pollen tubes. Chin Sci Bull, 2005, 50: 2175–2181



[26]Wei L, Zhang W, Liu Z, Li Y. Atkinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol, 2009, 9: 138

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[10] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[11] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[14] 高璐, 许文亮. 脯氨酸羟化酶GhP4H2在棉花纤维发育中的功能研究[J]. 作物学报, 2021, 47(7): 1239-1247.
[15] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!