作物学报 ›› 2015, Vol. 41 ›› Issue (04): 548-556.doi: 10.3724/SP.J.1006.2015.00548
张冬玲,张洪娜,郝晨阳,王兰芬,李甜,张学勇*
ZHANG Dong-Ling,ZHANG Hong-Na,HAO Chen-Yang,WANG Lan-Fen,LI Tian,ZHANG Xue-Yong*
摘要:
小麦生育期间的冠层温度,尤其是开花以后的冠层温度对植株衰老、粒重和品质等有很大影响。2012—2013和2013—2014年度,在河南新乡利用4个品种的选择导入系群体观测了冬小麦冠层温度与产量间的关系,并通过全基因组SSR标记检测相关主效基因位点,以解析其遗传机制。结果表明,冠层温度与千粒重和产量呈显著负相关;与有效穗数呈显著正相关,并随着时间的推移,相关性逐渐增大。在已报道的44个与千粒重或穗粒数相关联的SSR位点中,有9个与冠层温度显著关联,其中在6个位点上检测到优异等位变异,携带优异等位变异材料的冠层温度显著低于携带非优异等位变异材料的冠层温度。影响冠层温度的优异等位变异间存在明显的加性效应,这些位点同时也与千粒重和穗粒数呈现出显著关联。与冠层温度关联的SSR位点均与灌浆中后期旗叶的叶绿素含量相关联。由此表明,在灌浆后期良好的根系功能保证了水分和营养的正常供应,降低了冠层温度,而较低的冠层温度对叶绿素和光合起到了良好的保护作用,从而提高千粒重和增加籽粒产量。
[1]张嵩午. 小麦群体的第二热源及其增温效应. 生态学杂志, 1990, 9(2):1–6Zhang S W. The second heat source of wheat populations and its heating effects. J Ecol, 1990, 9(2):1–6 (in Chinese with English abstract)[2]张嵩午. 小麦温型现象研究. 应用生态学报, 1997, 8:471–474Zhang S W. Temperature type phenomenon of wheat. Chin J Appl Ecol, 1997, 8:471–474 (in Chinese with English abstract)[3]Balota M, Payne WA, Evett SR, Lazar M D. Canopy temperature depression sampling to assess grain yield variation and genotypic differentiation in winter wheat. Crop Sci, 2007, 47:1518–1529[4]Amani I, Fischer RA, Reynolds MP. Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci, 1996, 176:110–129[5]刘建军, 肖永贵, 祝芳彬, 程敦公, 李豪圣, 刘爱峰, 宋健民. 不同基因型冬小麦冠层温度与产量性状的关系. 麦类作物学报, 2009, 29:283–288Liu J J, Xiao Y G, Zhu F B, Chen D G, Li H S, Liu A F, Song J M. Effect of canopy temperature on yield traits of different genotypes of winter wheat. J Triticeae Crops, 2009, 29:283–288 (in Chinese with English abstract)[6]Reynolds MP, Singh RP, Ibrahim A, Ageeb O A A, Larqué-Saavedra A, Quick J S. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica, 1998, 100:84–95[7]Blum A, Shipiler L, Golan G, Mayer J. Yield stability and canopy temperature of wheat genotypes under drought stress. Field Crops Res, 1989, 22:289–296[8]Reynolds MP, Nagarajan S, Razzaque MA. Heat Tolerance. In: Reynolds MP, Ortiz Monasterio JI, McNab A eds. Application of Physiology in Wheat Breeding. Mexico: CIMMYT, 2001. pp 124–135[9]Garrity DP,O’Toole JC. Screening rice for drought resistance at the reproductive stage. Field Crops Res, 1994, 39:99–110[10]Garrity DP, O’Toole JC. Selection for reproductive stage drought avoidance in rice using infraned thermometry. Agron J, 1995, 87:773–779[11]Feng BL, Yu H, Hu YG, Gao X L, Gao J F, Gao D L, Zhang S W. The physiological characteristicsof the low canopy temperature wheat (TriticumaestivumL.) genotypes under simulated drought condition. ActaPhysiol Plant, 2009, 31:1229–1235[12]Hao CY, Dong YC, Wang LF, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin Sci Bull, 2008, 53:1518–1526[13]Wang LF, Ge HM, Hao CY, Zhang X Y. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One,2012, 7:e29432.DOI:10.1371/journal.pone.0029432[14]Zhang DL, Hao CY, Wang LF, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivumL.). Planta, 2012, 236:1507–1517[15]Hardy OJ,Vekemans X.SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. MolEcol Notes, 2002, 2: 618–620[16]Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotriaofficinalis (Rubiaceae). Am J Bot, 1995, 82:1420–1425[17]Yu JM, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotech, 2006, 17:155–160[18]PritchardJK, Rosenberg NA. Use of unlinked geneticmarkers to detect population stratification in association chain will tend to get stuck moving among very similarstudies. Am J Hum Genet, 1999, 65:220–228[19]Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155:945–959[20]李向阳, 朱云集, 郭天财. 不同小麦基因型灌浆期冠层和叶面温度与产量和品质关系的初步分析. 麦类作物学报, 2004, 24(2):88–91Li X Y, Zhu Y J, Guo T C. Preliminary analysis on the relationship between wheat canopy temperature and yield with quality in filling stage in different genotypes.J Triticeae Crops, 2004, 24(2):88–91 (in Chinese with English abstract)[21]徐银萍, 宋尚有, 樊廷录, 李兴茂, 辛平. 旱地冬小麦花后期冠层温度与产量和水分利用效率的关系. 麦类作物学报, 2007, 27:528–532Xu Y P, Song S Y, Fan T L, Li X M, Xin P. Relationship of canopy temperature with grain yield, water use among various genotypes of dryland winter wheat. J Triticeae Crops, 2007, 27:528–532 (in Chinese with English abstract)[22]Fischer RA, Rees D, Sayre KD, Lu Z M, Condon A G, Larqué-Saavedra A. Wheat yield progress associated with higher stomatal conductance and photosyntheticrate, and cooler canopies. Crop Sci, 1998, 38:1467–1475[23]Rashid A, Stark J C, Tanveer A, Mustafa T. Use of Canopy Temperature measurements as a screening tool for drought tolerance in spring wheat. J Agron Crop Sci, 1999, 182: 231–238[24]Sharma K D, Pannu R K, Tyagi P K, Chaudhary B D, Singh D P. Effect of moisture stress on plant water relations and yield of different wheat genotypes. Indian J Plant Physiol, 2003, 8: 95–102[25]李向阳, 马溶慧, 朱云集, 郭天财, 马冬云, 王晨阳. 不同冠温特征小麦的籽粒灌浆特性及内源激素的变化. 麦类作物学报, 2005, 25(5):32–37Li X Y, Ma R H, Zhu Y J, Guo T C, Ma D Y, Wang C Y.Relationship of grain filling characteristics and endogenous hormones content of winter wheat (Triticum aestivum L.) cultivars with different canopy temperature character in filling stage. J Triticeae Crops, 2005, 25(5):32–37 (in Chinese with English abstract)[26]Winter SR, Musick JT, Porter KB. Evaluation of screening techniques for breeding drought resistant winter wheat. Crop Sci, 1988, 28:512–516[27]Royo C, Villegas D, Garciadel Moral LF, Elhani S, Aparicio N, Rharrabti Y, Araus J L. Comparative performance of carbon is otope discrimination and canopy temperature depression as predictors of genotypes differences in durum wheat yield in Spain. Aust J of Agric Res, 2002, 53:561–569[28]高海涛, 王育红, 孟战赢, 吴少辉, 张园. 超高产小麦产量及旗叶生理特性的研究. 麦类作物学报, 2010, 30:1080–1084Gao H T, Wang Y H, Meng Z Y, Wu S H, Zhang Y. Study on yield and physiological characteristics of flag of super high yield wheat cultivars.J Triticeae Crops, 2010, 30:1080–1084 (in Chinese with English abstract)[29]隋娜, 李萌, 田纪春, 孟庆伟, 赵世杰. 超高产小麦品种(系)生育后期光合特性的研究. 作物学报, 2005, 31:808–814Sui N, Li M, Tian J C, Meng Q W, Zhao S J. Photosynthetic characteristics of super high yield cultivars at late growth period. Acta Agric Sin, 2005, 31:808–814 (in Chinese with English abstract)[30]李永攀, 罗培高, 任正隆. 小麦持绿性及其与产量关系研究. 西南农业学报, 2008, 21:1221–1224Li Y P, Luo P G, Ren Z L. Studies on the relation between the yield and trait of green-keeping wheat. Southwest China J Agric Sci, 2008, 21:1221–1224 (in Chinese with English abstract)[31]Reynolds MP,Sayre KD, Rajaram S. Physiological and genetic changes of irrigated wheat in the post green revolution period and approaches for meeting projected global demand. Crop Sci, 1999, 39:1611–1621[32]Lopes MS, Reynolds MP, Jalal-Kamali MR, Moussa M, Feltaous Y, Tahir I S A, Barma N, Vargas M, Mannes Y, Baum M. The yield correlations of selectable physiological traits in a population advanced spring wheat lines grown in warm and drought environments. Field Crops Res, 2012, 128:129–136[33]申国安, 王竹林, 李万昌, 董普辉, 刘曙东, 何蓓如. 小麦冠层温度的遗传和配合力分析. 西北农业大学学报, 2000, 28(6):43–47Shen G A, Wang Z L, Li W C, Dong P H, Liu S D, He B R. Analysis of the inheritance and combining ability of the canopy temperature in wheat. Acta Univ Agric Boreali-Occident, 2000, 28:43–47 (in Chinese with English abstract)[34]Saint Pierre C, Crossa J, Manes Y, Reynolds M P. Gene action of canopy temperature in bread wheat under diverse environments. Theor Appl Genet, 2010, 120:1107–1117[35]Rebetzke GJ, Rattey AR, Farquhar GD, Richards R A, Condon A G. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct Plant Biol, 2013, 40:14–33 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
|