欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (04): 531-538.doi: 10.3724/SP.J.1006.2015.00531

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

OsMYB调控化感水稻酚酸类物质合成及其抑草作用

沈荔花1,2,李碧凉1,任勇杰1,李程勋1,钟永嘉2,方长旬1,2,林文雄1,2,*   

  1. 1福建农林大学生命科学学院,福建福州 350002;2福建农林大学农业生态研究所,福建福州 350002
  • 收稿日期:2014-11-18 修回日期:2015-02-06 出版日期:2015-04-12 网络出版日期:2015-03-03
  • 基金资助:

    本研究由国家自然科学基金项目(31271670, 31300336), 教育部高等学校博士学科点专项科研基金优先发展领域(20133515130001)和福建省自然科学基金项目(2010J05045,2012J01075)资助。

Phenolic Acid Synthesis of Allelopathic Rice Regulated by OsMYB and Its Weed Inhibition

SHEN Li-Hua1,2,LI Bi-Liang1,REN Yong-Jie1,LI Cheng-Xun1,ZHONG Yong-Jia2,FANG Chang-Xun1,2,LIN Wen-Xiong1,2,*   

  1. 1 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2 Institute of Agro-ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2014-11-18 Revised:2015-02-06 Published:2015-04-12 Published online:2015-03-03

摘要:

基因表达调控是水稻化感作用形成的重要基础。本研究对化感水稻PI312777 (Oryza sativa L.)的OsMYB (CT829537)基因分别进行过表达(overexpression, OE)和RNA干扰(RNAi),再与稗草(Echinochloa crusgalli, BYG)共培养,以野生型PI312777为对照。结果发现,与稗草共培养下CT829537-OEPI312777的酚类代谢关键酶基因表达上调,根系及其水培液中的总酚酸浓度增加,抑草能力增强;相同处理下CT829537-RNAiPI312777则相反,其酚类代谢关键酶基因较野生型植株表达下调,总酚酸浓度降低,抑草能力下降。这表明OsMYB (CT829537)通过调节化感水稻的酚酸类物质合成进而影响其抑草能力。

关键词: 水稻, 化感作用, 转录因子, 酚酸, 基因表达调控

Abstract:

Regulation of gene expression is a vital process in the formation of rice allelopathy. In this study, allelopathic rice PI312777 (Oryza sativa L.) was modified by RNA interference (RNAi) and overexpression(OE) technologies to inhibit or enhance gene expression of OsMYB (CT829537) in PI312777 respectively. The results showed that up-regulation of phenolic synthesis related genes was found in CT829537-OE transgenic PI312777 co-cultured with barnyardgrass (BYG), compared with that in wild type. However, the reverse was true in the CT829537-RNAi transgenic PI312777. Up-regulation of the gene expression in CT829537-OE transgenic PI312777 increased phenolic acids contents in rice root and root exudates, which led to enhance allelopathic inhibition on barnyardgrass. In contrast, decreases of phenolic acids contents and weed inhibition were found in CT829537-RNAi transgenic PI312777. These results implied that CT829537 is responsible for regulating phenolic synthesis in allelopathic rice PI312777 and then enhances allelopathic inhibition on weeds.

Key words: Rice, Allelopathy, Transcription factor, Phenolic acid, Gene expression regulation

[1]Olofsdotter M, Navarez D, Rebulanan M, Streibig J C. Weed-suppressing rice cultivars: does allelopathy play a role. Weed Res, 1999, 39: 441–454



[2]Chou C H, Chang F J, Oka H I. Allelopathic potentials of wild rice, Orzyaperennis. Taiwania, 1991, 36: 201–210



[3]Chou C H. Adaptive autointoxication mechanisms of Oryza sativa. In: Olofsdotter M, ed. Allelopathy in Rice. Los Banzos, Philippines: IRRI, 1996. pp 25–27



[4]Fujii Y. The allelopathic effect of some rice varities. In: Proceedings of the International Seminar Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia. Tsukuba, Japan, 1992. pp 160–165



[5]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910



[6]Dilday R H, Yan W G, Moldenhauer K A K, Gravois K A. Allelopathic activity in rice for controlling major aquatic weeds. In: Olofsdotter M, ed. Proceedings of Workshop on Allelopathy in Rice. Manila, Philippines: IRRI, 1998. pp 7–26



[7]Dilday R H, Nastasi P, Smith R J Jr. Allelopathic observation in rice (Oryza sativa L.) to ducksalad (Heterantheralimosa). Proc Arkansas Acad Sci, 1989, 43: 21–22



[8]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910



[9]Dilday R H, Mattice J D, Moldenhauer K A. An overview of rice allelopathy in the USA. In: Kim K U, Shin D H, eds. Rice Allelopathy. Taegu (Korea): Kyungpook National University, 2000. pp 15–26



[10]Jensen L B, Courtois B, Shin L S, Li Z K, Olofsdotter M, Mauleon R P. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J, 2001, 93: 21–26



[11]Ebana K, Yan W G, Dilday R, Namai H, Okuno K. Analysis of QTL associated with the allelopathic effect of rice using water soluble extracts. Breed Sci, 2001, 51: 47–51



[12]Xiong J, Jia X L, Deng J Y. Analysis of epistatic effect and QTL interactions with environment for allelopathy in rice (Oryza sativa L.). Allelopathy J, 2007, 20: 259–268



[13]Lee S B, Seo K I, Koo J H, Hur H S, Shin J C. QTLs and molecular markers associated with rice allelopathy. In: Haper J D I, An M, Kent J H, eds. Proceedings of the Fourth World Congresson Allelopathy “Establishing the scientific base”. Australia: Charles Sturt Universit, Wagga Wagga, NSW, 2005. pp 505–507



[14]Zeng D L, Qian Q, Teng S, Fujimoto H, Kunihifo Y, Zhu L H. Genetic analysis of rice allelopathy. Chin Sci Bull, 2003, 48: 265–268



[15]王海斌, 何海斌, 熊君, 邱龙, 方长旬,曾聪明, 严琳, 林文雄. 低钾胁迫对水稻(Oryza sativa L.)化感潜力变化的影响. 生态学报, 2008, 28: 6219–6227



Wang H B, He H B, Xiong J, Qiu L, Fang C X, Zeng C M, Yan L, Lin W X. Effects of potassium stress on allelopathic of rice (Oryza sativa L.). Acta Ecol Sin, 2008, 28: 6219–6227 (in Chinese with English abstract)



[16]王海斌, 何海斌, 叶陈英, 邱龙, 方长旬, 林文雄. 不同化感潜力水稻秧苗响应低钾的光合生理特性. 中国生态农业学报, 2008, 16: 1474–1477



Wang H B, He H B, Ye C Y, Qiu L, Fang C X, Lin W X. Photosynthetic physiology of different allelopathic rice accessions at seedling stage under phtossium stress. Chin J Eco-Agric, 2008, 16: 1474–1477 (in Chinese with English abstract)



[17]王海斌, 何海斌, 曾聪明, 吴良展, 沈荔花, 熊君, 林瑞余, 林文雄. 低磷胁迫下不同化感潜力水稻秧苗生长的分子生理特性. 应用与环境生物学报, 2008, 14: 593–598



Wang H B, He H B, Zeng C M, Wu L Z, Shen L H, Xiong J, Lin R Y, Lin W X. Molecular physiological properties of different rice accessions mediated by different phosphorus supplies at seedling stage. Chin J Appl Environ Biol, 2008, 14: 593–598 (in Chinese with English abstract)



[18]Mattice J, Lavy T, Sdulman B, Dilday R H. Searching for allelochemicals in rice that control ducksalad. In: Olofsdotter M ed. Proceedings of Workshop on Allelopathy in Rice. Manila, Philippines: IRRI, 1998. pp81–98



[19]Seal A N, Pratley J E, Haig T, An M. Identification and quantitation of compounds in a series of allelopathic and nonallelopathic rice root exudates. J Chem Ecol, 2004, 30: 1647–1662



[20]Macias F A, Chinchilla N, Varela R M, Molinllo J M G. Bioactive steroids from Oryza sativa L. Steroids, 2006, 71: 603–608



[21]He H B, Wang H B, Fang, C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One, 2012, 7(5): e37201



[22]Kato N H. Barnyard grass-induced rice allelopathy and momilactone B. Plant Physiol, 2011, 168: 1016–1020



[23]Fang C X, He H B, Wang Q S, Qiu L, Wang H B, Zhuang Y E, Xiong J, Lin W X. Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regul, 2010, 61: 277–286



[24]Fang C X, Zhuang Y E, Xu T C, Li Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice henylalanine ammonia-lyase gene expression. J Chem Ecol, 2013, 39: 204–212



[25]Putu S, Tsutomu S, Hidenari S, Masahiro N, Masayuki N, Minco K. Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng, 2005, 100: 391–397



[26]Fang C X, Wang Q S, Yu Y, Lin Q M, Zhang H L, Wu X C, Chen T, Lin W X. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul, 2011, 65: 1–10



[27]熊君, 王海斌, 方长旬, 邱龙, 吴文祥, 何海斌, 林文雄. 不同氮素供应下水稻酚类物质代谢关键酶基因差异表达. 植物生理与分子生物学学报, 2007, 33: 387–394



Xiong J, Wang H B, Fang C X, Qiu L, Wu W X, He H B, Lin W X. The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol, 2007, 33: 387–394 (in Chinese with English abstract)



[28]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408



[29]庄月娥. 水稻抑草作用关键基因的分子生态机制研究. 福建农林大学硕士学位论文, 福建福州, 2011



Zhuang Y E. Molecular Ecological Mechanism of the Key Gene for Weed-suppression in Allelopathic Rice. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, China, 2011 (in Chinese with English abstract)



[30]Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008, 34: 688–695



[31]Xiong J, Wang H, Qiu L, Wu H W, Chen R S, He H B, Lin R Y, Lin W X. qRT-PCR analysis of key enzymatic genes related to phenolic acid metabolism in rice accessions (Oryza sativa L.) exposed to low nitrogen treatment. Allelopathy J, 2010, 25: 345–356



[32]王海斌, 熊君, 方长旬, 邱龙, 吴文祥, 何海斌, 林文雄. 氮素胁迫下强、弱化感水稻萜类代谢途径中关键酶基因差异表达的FQ-PCR分析. 作物学报, 2007, 33(8): 1329–1334



Wang H B, Xiong J, Fang C X, Qiu L, Wu W X, He H B, Lin W X. FQ-PCR analysis on the differential expression of the key enzyme genes involved in isoprenoid metabolic pathway in allelopathic and weak allelopathic rice accessions (Oryza sativa L.) under nitrogen stress condition. Acta Agron Sin(作物学报), 2007, 33(8): 1329–1334(in Chinese with English abstract)



[33]孙小霞, 王海斌, 林辉锋, 何海斌, 陆锦池, 曾聪明, 熊君, 林文雄. 田间旱育条件下不同化感潜力水稻的抑草效应分析. 中国生态农业学报, 2009, 17: 842–846



Sun X X, Wang H B, Lin H F, He H B, Lu J C, Zeng C M, Xiong J, Lin W X. Effects of weed suppression by different allelopathic rice varieties under dry-raising condition. Chin J Eco-Agric, 2009, 17: 842–846 (in Chinese with English abstract)



[34]孙小霞, 王海斌, 何海斌, 陆锦池, 林文雄. 田间旱育条件下不同化感潜力水稻根际土壤酚酸类和萜类物质分析. 中国生态农业学报, 2014, 22: 806–812



Sun X X, Wang H B, He H B, Lu J C, Lin W X. Analysis of phenolic acids and terpenoids in rhizosphere soils of different allelopathic rice varieties under dry field conditions. Chin J Eco-Agric, 2014, 22: 806–812 (in Chinese with English abstract)



[35]Junaedi A, Jung W S, Chung I M, Kim K H. Differentially expressed genes of potentially allelopathic rice in response against barnyardgrass. J Crop Sci Biotechnol, 2007, 10: 231–236



[36]Pazares J, Ghosal D, Wienand U, Peterson P A, Saedler H. There gulatory C1 locus of Zea mays encodes a proterin with homology to myb-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553–3558



[37]Cone K C, Burr F A, Burr B. Molecular analysis of the maize anthocyanin regulatory locus C 1. Proc Natl Acad Sci USA, 1986, 83: 9631–9635



[38]Moyano E, Martinez-Garcia J F, Martin C. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell, 1996, 8: 1519–1532



[39]Legay S, Lacombe E, Goicoechea M, Brière C, Séguin A, Mackay J, Grima-Pettenati J. Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Sci, 2007, 173: 542–549

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!