欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (06): 845-860.doi: 10.3724/SP.J.1006.2015.00845

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生种子休眠解除过程中相关基因的表达分析

陈静1,4,江玲1,王春明1,胡晓辉4,翟虎渠3,万建民1,2,*   

  1. 1 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京 210095; 2 中国农业科学院作物科学研究所, 北京 100081; 3 中国农业科学院, 北京 100081; 4 山东省花生研究所, 山东青岛 266100
  • 收稿日期:2014-12-15 修回日期:2015-03-09 出版日期:2015-06-12 网络出版日期:2015-04-21
  • 基金资助:

    本研究由山东省农业科学院青年英才培养计划,山东省良种工程(高产优质花生新品种培育),青岛民生计划(13-1-3-77-nsh), 青岛民生计划(14-2-3-34-nsh)资助。

Expression Analysis of Genes Involved in Peanut Seed Dormancy Release (Arachis hypogaea L.)

CHEN Jing1,4,JIANG Ling1,WANG Chun-Ming1,HU Xiao-Hui4,ZHAI Hu-Qu3,WAN Jian-Min1,2,*   

  1. 1 State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 Shandong Peanut Research Institute, Qingdao 266100, China
  • Received:2014-12-15 Revised:2015-03-09 Published:2015-06-12 Published online:2015-04-21

摘要:

种子休眠性是花生重要的农艺性状,外源乙烯利能诱导花生种子休眠的解除,为了阐明乙烯利作用下花生种子休眠解除的分子机制,设置吸胀的休眠种子为对照,100 mg L–1乙烯利处理吸胀休眠种子后不同时间的样品(AE1AE2AE3)进行转录组分析,比较了花生种子休眠解除过程中ABAGAETHauxin相关基因的表达。结果表明,15个与GA40个与ABA60个与ETH56个与auxin相关的unigenes在花生种子休眠解除过程中表现显著差异表达。荧光定量PCR结果显示,ABA合成关键基因AhNCED2和代谢关键基因AhCYP707A1在种子休眠解除过程中均受外源乙烯利诱导,表达差异显著;在休眠和无休眠种子吸胀萌发过程中,AhNCED2AhCYP707A1的表达趋势不同,AhNCED2对于种子休眠的维持发挥积极作用,而AhCYP707A1对于种子休眠解除发挥积极作用。

关键词: 花生, 休眠性, ABA, AhNCED2, AhCYP707A1

Abstract:

Seed dormancy is one of important agronomic traits in peanut (Arachis hypogaea L.). Seed dormancy can be released with exogenous ethephon. To understand the molecular mechanisms of switches from dormancy to germination in peanut seeds underlying the role of ethephon, we preformed transcriptome analyses among imbibed dormant seeds as control and dormancy-released seeds (AE1, AE2, AE3) treated by 100 mg L–1 exogenous ethephon, and compared the expression of unigenes related to ABA, GA, ETH and auxin. The results showed that there were 15, 40, 60, and 56 unigenes associated with GA, ABA, ETH, and auxin respectively, which were significantly differentially expressed unigenes during the process from dormancy to germination. The results of Real-time RT-PCR showed that the expressions of AhNCED2 and AhCYP707A1 were induced distinctly by exogenous ethephon in seed dormancy released process. In dormant and non-dormant seed imbibition and germination processes, there were different roles between expresses of AhNCED2 and AhCYP707A1. AhNCED2 played a positive role in maintaining seed dormancy, while AhCYP707A1 played a positive role for seed dormancy breaking.

Key words: Peanut, Seed, Dormancy, ABA, AhNCED2, AhCYP707A1

[1]Bewley J D, Bradford K J, Hilhorst H W M, Nonogaki H. Seed Physiology of Development, Germination and Dormancy (3rd edn). London: Springer New York Heidelberg Dordrecht London, 2013, pp 247–295

[2]曹雅君, 江玲, 罗林广, 翟虎渠, 志村英二, 杨世湖, 万建民. 水稻品种休眠特性的研究. 南京农业大学学报, 2001, 24(2): 1–5

Cao Y J, Jiang L, Luo LG, Zhai H Q, Shimura E, Yang S H, Wan J M. A study on seed dormancy in rice (Oryza sativa L.). J Nanjing Agric Univ, 2001, 24(2): 1–5 (in Chinese with English abstract)

[3]徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141−1156

Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141−1156 (in Chinese with English abstract)

[4]Erwann A, Julien S, Francoise C, Loic R, Marion-poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Plant Cell Biol, 2013, 4: 1−19

[5]Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479-488

[6]Cadman C S, Toorop P E, Hilhorst H W, Finch-Savage W E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805−822

[7]Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci Res, 2010, 20: 55−67

[8]Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J P, Kamiya Y J, Nambar E, Truong H N. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol, 2009, 149: 949−960

[9]Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol, 2006, 141: 97–107

[10]Penfield S, Li Y, Gilday A D, Graham S, Graham I A. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell, 2006, 18: 1887–1899

[11]Matilla A J. Ethylene in seed formation and germination. Seed Sci Res, 2000, 10: 111–126

[12]Siriwitayawan G, Geneve R L, Downie A B. Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Sci Res, 2003, 13: 303–314

[13]Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Ross A R S and Kermode A R The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J, 2005, 42: 35–48

[14]Karssen C M, Zagorski S, Kepczynski J, Groot S P C. Key role for endogenous gibberellins in the control of seed germination . Ann Bot-London, 1989, 63: 71–80

[15]Koornneef M, Karssen C M. Seed dormancy and germination. In: Meyerowitz E M, Sommerville C R, eds. Arabidopsis. NewYork: Cold Spring Harbor Laboratory, 1994. PP: 313–334

[16]禹山林. 中国花生遗传育种学. 上海: 上海科学技术出版社, 2011

Yu S L. Genetics and Breeding of China peanut. Shanghai: Shanghai Science and Technology Press, 2011 (in Chinese)

[17]周桂元, 梁炫强. 花生种子休眠性的研究进展. 江西农业学报, 2011, 23(11): 61–63

Zhou G Y, Liang X Q. Research advance in seed dormancy of peanut. Acta Agric Jiangxi, 2011, 23: 61–63 (in Chinese with English abstract)

[18]Kumarl S S, Patel S A. Seed dormancy in groundnut (Arachis hypogaea L.): II Estimation of gene effects in six crosses. Trop Agric (Trinidad), 1999, 76: 188–192

[19]Upadhyaya H D, Nigam S N. Inheritance of fresh seed dormancy in Peanut. Crop Sci, 1999, 39: 98–101

[20]胡晓辉, 苗华荣, 杨伟强, 张建成, 陈静. 花生种子休眠性的遗传分析及其影响因素的研究. 核农学报, 2013, 27: 1449–1455

Hu X H, Miao H R, Yang W Q, Zhang J C, Chen J. Genetic analysis and factors influencing peanut (Arachis hypogaea L.) seed dormancy. J Nucl Agric Sci, 2013, 27: 1449–1455 (in Chinese with English abstract)

[21]Vivian K. Toole, Bailey W K, Toole E H. Factors influencing dormancy of peanut seeds. Plant Physiol, 1964, 823–832

[22]Ketring D L, Morgan P W. P hysiology of Oil Seeds I. Regulation of dormancy in Virginia-type peanut seed. Plant Physiol, 1970, 45: 268–273

[23]Ketring D L, Morgan P W. Physiology of Oil Seeds II. Dormancy release in Virginia-type peanut seeds by plant growth regulators. Plant Physiol, 1971, 47: 488–492

[24]Ketring D L, Morgan P W. Ethylene as a component of the emanations from germinating peanut seeds and its effect on dormant Virginia-type seeds. Plant Physiol, 1969, 44: 326–330

[25]Wang M L, Chen C Y, Pinnow D L, Barkley N A, Pittman R N, Lamb M, Pederson G C. Seed dormancy variability in the US peanut Mini-core collection. Res J Seed Sci, 2012, 5: 84–95

[26]Issa F, Danièl F, Jean-François R, Hodo-Abolo T, Mbaye–Ndoye S, Tahir D A, Ousmane N. Inheritance of fresh seed dormancy in Spanish-type peanut (Arachis hypogaea L.): bias introduced by inadvertent selfed flowers as revealed by microsatellite markers control. Afr J Biotechnol, 2010, 9: 1905–1910

[27]Asibuo J Y, Akromah R, Safo-Kantanka O, Adu-Dupaah H, Seth K O, Agyemen A. Inheritance of fresh seed dormancy in groundnut. Afr J Biotechnol, 2008, 7: 421–424

[28]Sun T P, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol, 2004, 55: 197–223

[29]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol Plant Mol Bio , 1984, 35: 155–189

[30]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009, 60: 3311–3336

[31]Gonzalez-Guzman M, Abia D, Salina J, Serrano R, Rodriguez P. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. Plant Physiol, 2004, 135: 325–333

[32]Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism. EMBOJ, 2004, 23: 1647–1656

[33]Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot, 2006, 57: 2421–2434

[34]Millar A A, Jacobsen J V, Ross J J, Helliwell C A, Poole A T, Scofield G, Reid J B, Gubler F. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase. Plant J, 2006, 45: 942–954

[35]Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cyeles, water stress and abscisic acid. Plant Mol Biol, 2000, 42: 833–845

[36]White C N, Proebsting W M, Hedden P, White C N, Rivin C J. Gibberellins and seed development in maize. I. evidence that gibberelllin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol, 2000, 122: 1081–1088

[37]Calvo A P, Nicola S C, Nicolas G, Rodriguez D. Evidence of a cross-talk regulation of a GA 20-oxidase(FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol Plant, 2004, 120: 623–6301

[38]Hermann K, Meinhard J, Dobrew P, Linkies A, Pesek B, Hess B, Machackova I, Fischer U, Leubner-Metzger G. 1-aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot, 2007, 58: 3047–3060

[39]Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vogeli-Lange R, Meins E. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination. Plant Mol Biol, 1998, 38: 785–795

[40]Petruzzelli L, Coraggio L, Leubner-Metzger G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta, 2000, 211: 144–149

[41]Linkies A, Müller K, Morris K, Tureckova V, Wenk M, Cadman C S C, Corbineau F, Stmad M, Lynn J R, Finch-Savage W E, Leubner-Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 2009, 21: 3803–3822

[42]Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-1-carboxylic acid oxidase in radical tissues of germinated pea seeds. Plant Cell Environ, 2003, 26: 661–671

[43]Teale W D, Paponov I A, Palme K. Auxin in action: signalling transport and the control of plant growth and development. Nat Rev Mol Cell Biol, 2006, 7: 847–859

[44]Leyser O. Dynamic integration of auxin transport and signalling. Curr Biol, 2006, 16: 424–433

[45]Quint M, Gray W M. Auxin signalling. Curr Opin Plant Biol, 2006, 9: 448–453

[46]Liu X D, Zhang H, Zhao Y, Feng Z, Li Q, Yang H Q, Luan S, Li J, He Z H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acd Sci USA, 2013, 110: 15485–15490

[47]Matilla A J, Matilla-Vazquez M A. Involvement of ethylene in seed physiology. Plant Sci, 2008, 175: 87–97

[48]Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell, 2000, 12: 1117–1126

[49]Kende H, Van der Knaap E, Cho H T. Deepwater rice: a model plant to study stem elongation. Plant Physiol, 1998, 118: 1105–1110

[50]Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103–1116

[51]Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol, 2007, 64: 633–644

[52]Gazzarrini S, McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol, 2001, 4: 387–391

[53]Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005,15: 281–307

[54]Liu S, Lv Y, Wan X R, Li LM, Hu B, Li L. Cloning and expression analysis of cDNAs encoding ABA 8'-hydroxylase in peanut plants in response to Osmotic stress. PLoS One, 2014, 5: 1–9

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!