作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1073-1085.doi: 10.3724/SP.J.1006.2015.01073
齐波,张宁, 赵团结,邢光南,赵晋铭*,盖钧镒
QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*
摘要:
叶面积指数(LAI)是反映田间作物长势及产量潜力的重要参数,规模化育种要求及时、快速、无损地获取大量育种材料的田间生长信息。本研究利用52份大豆品种(系)的2年田间试验,在盛花期(R2)、盛荚期(R4)及鼓粒初期(R5)测定大豆冠层反射光谱,同步测定大豆LAI和地上部生物量(ABM)。结果表明,不同生育期LAI与冠层光谱在可见光波段(426~710 nm)均表现显著负相关(P<0.05),在近红外波段(748~1331 nm)均表现为显著正相关(P<0.05)。根据文献已报道的植被指数与LAI的线性相关性分析,NDVI和RVI类型的植被指数能够较好地指示大豆LAI,进而在全光谱250~2500 nm范围内涵盖上述两种类型的植被指数,经对建立的大豆LAI线性与非线性模型综合评价,遴选出不同生育期敏感植被指数的最优估测模型。其中,R2期RVI (825, 586)所建模型(y = 0.03x1.83)、R4期RVI (763, 606)所建模型(y = 0.38e0.14x)及R5期RVI (744, 580)所建模型(y = 0.06x1.79)的预测表现最好,决定系数(R2)分别为0.677、0.639和0.664,相对标准误(RRMSE)均小于20%;模型验证的决定系数(R2*)分别为0.643、0.612和0.634,均根方误差(RRMSE*)约20%。进而发现针对LAI和ABM的RVI共性核心波段组合为R2期的825 nm和586 nm、R4期的763 nm和606 nm以及R5期的744 nm和580 nm。本研究结果可望为大豆规模化育种中获取大量不设重复试验材料的田间长势信息提供快速无损预测的技术支持。
[1]Watson D J. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Bot, 1947, 11: 41–76[2]Haboudane D, Miller J R, Pattey E, Zarco–Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337–352[3]Goetz S J, Prince S D. Remote sensing of net primary production in boreal forest stands. Agric For Meteorol, 1996, 78: 149–179[4]Moran M S, Maas S J, Pinter Jr P J. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sens Rev, 1995, 12: 335–353[5]Tucker C J, Holben B N, Elgin J H, Jr., McMurtrey J E. Relationship of spectral data to grain yield variation. Photogramm Eng Rem S, 1980, 46: 657–666[6]Lam H M, Xu X, Liu X, Chen W, Yang G, Wong F L, Li M W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun S S, Zhang G. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059[7]Vaesen K, Gilliams S, Nackaerts K, Coppin P. Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice. Field Crops Res, 2001, 69: 13–25[8]Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71: 158–182[9]Mutanga O, Skidmore A K, van Wieren S. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. Isprs J Photogr Remote Sens, 2003, 57: 263–272[10]Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model. Intl J Remote Sens, 1990, 11: 1755–1773[11]薛利红, 曹卫星, 罗卫红, 王绍华. 光谱植被指数与水稻叶面积指数相关性的研究. 植物生态学报, 2004, 28: 47–52 Xue L H, Cao W X, Luo W H, Wang S H. Relationship between spectral vegetation indices and LAI in rice. Acta Phytoecol Sin, 2004, 28: 47–52 ( in Chinese with English abstract) [12]吴琼, 齐波, 赵团结, 姚鑫锋, 朱艳, 盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨. 作物学报, 2013, 39: 309–318Wu Q, Qi B, Zhao T J, Yao X F, Zhu Y, Gai J Y. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean. Acta Agron Sin, 2013, 39: 309–318 (in Chinese with English abstract) [13]宋开山, 张柏, 王宗明, 张渊智, 刘焕军. 基于人工神经网络的大豆叶面积高光谱反演研究. 中国农业科学, 2006, 39: 1138–1145Song K S, Zhang B, Wang Z M, Zhang Y Z, Liu H J. Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks. Sci Agric Sin, 2006, 39: 1138–1145 (in Chinese with English abstract)[14]黄春燕, 刘胜利, 王登伟, 战勇, 张恒斌, 袁杰, 马勤建, 陈燕, 赵鹏举. 大豆叶面积指数的高光谱估算模型研究. 大豆科学, 2008, 27: 228–232Huang C Y, Liu S L, Wang D W, Zhan Y, Zhang H B, Yuan J, Ma Q J, Chen Y, Zhao P J. Models for estimating soybean leaf area index using hyperspectral data. Soybean Sci, 2008, 27: 228–232 (in Chinese with English abstract)[15]Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol, 2004, 161: 165–173[16]Wang W, Yao X, Yao X F, Tian Y C, Liu X J, Ni J, Cao W D, Zhu Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res, 2012, 129: 90–98[17]Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol, 1996, 148: 494–500[18]Gutierrez-Rodriguez M, Escalante–Estrada J A, Rodriguez gonzalez M T, Reynolds J P. Canopy reflectance indices and its relationship with yield in common bean plants (Phaseolus vulgaris L.) with phosphorous supply. J Agric Biol, 2006, 2: 203–207 [19]Marshak A, Knyazikhin Y, Davis A B, Wiscombe W J, Pilewskie P. Cloud-vegetation interaction: use of normalized difference cloud index for estimation of cloud optical thickness. Geophys Res Lett, 2000, 27: 1695–1698[20]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to lai and above-ground dry phytomass. Remote Sens Environ, 1989, 27: 119–127[21]Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273–285[22]Aparicio N, Villegas D, Casadesus J, Araus J L, Royo C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron J, 2000, 92: 83–91[23]Loague K, Green R E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J Contam Hydrol, 1991, 7: 51–73[24]Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991, 27: 337–350[25]Efron B, Stein C. The Jackknife estimate of variance. Ann Stat, 1981, 9: 586–596[26]Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: Society for Industrial and Applied Mathematics, 1982. pp 14–22[27]Heege H J, Reusch S, Thiessen E. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis Agric, 2008, 9: 115–131[28]Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res, 2011, 124: 74–84[29]Goel P K, Prasher S O, Landry J A, Patel R M, Viau A A, Miller J R. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Trans ASAE, 2003, 46: 1235–1246[30]Zarco–Tejada P J, Miller J R, Noland T L, Mohammed G H, Sampson P H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE T Geosci Remote, 2001, 39: 1491–1507[31]Baret F, Guyot G. Potentials and limits of vegetation indexes for lai and apar assessment. Remote Sens Environ, 1991, 35: 161–173[32]Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156–172[33]Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens, 1996, 22: 229–242[34]Brown L, Chen J M, Leblanc S G, Cihlar J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sens Environ, 2000, 71: 16–25 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
[15] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
|