作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1155-1163.doi: 10.3724/SP.J.1006.2015.01155
何旎清,柳周,张龙,白苏阳,田云录,江玲*,万建民
HE Ni-Qing,LIU Zhou,ZHANG Long,BAI Su-Yang,TIAN Yun-Lu,JIANG Ling*,WAN Jian-Min
摘要:
在水稻品种Dongjin的T-DNA插入突变体库中筛选到一份黄绿叶突变体T113,该突变体在生长的整个时期叶片都呈现黄绿色,且越到后期表型越明显。T113与野生型亲本Dongjin相比,叶片光合色素含量明显降低,株高变矮,结实率降低,每穗着粒数、穗长和千粒重均明显减少,抽穗期延迟,且黄绿叶性状不受温度影响,叶绿体中的类囊体排列较为疏松,出现更多的嗜锇体,叶绿素合成和质体发育相关基因表达量发生改变。遗传分析表明, T113的突变性状由1对隐性核基因控制。利用T113/N22的F2群体,将突变基因定位在第2染色体长臂Indel标记CX2和JX18之间,物理距离约为79 kb,此区间内包含12个预测基因。
[1]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet, 1997, 31: 61–89[2]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyllsynthesis. Plant Physiol, 1996, 112: 821–832[3]胡忠, 彭丽萍, 蔡永华. 一个黄绿色的水稻细胞核突变体. 遗传学报, 1981, 8: 256–261Hu Z, Peng L P, Cai Y H. A yellow-green nucleus mutant of rice. Acta Genet Sin, 1981, 8: 256–261 (in Chinese with English abstract)[4]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. .Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880 [5]Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004, 56: 1–14[6]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312.[7]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo S H, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337.[8]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472[9]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003[10]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koi H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133[11]Wu Z M, Zhang X, He B. Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40.[12]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818[13]Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143–152[14]Lopez-Juez E. Plastid biogenesis between light and shadows. J Exp Bot, 2007, 58: 11–26[15]Sakamoto W, Miyagishima S Y, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arabidopsis Book, 2008, 6: e110[16]Webber A N, Malkin R. Photosystem I reaction-centre proteins contain leucine zipper motifs. A proposed role in dimer formation. FEBS Lett, 1990, 264: 1–4[17]Rutherford A W, Faller P. Photosystem II: evolutionary perspectives. Philos Trans R SocLond B Biol Sci. 2003, 358: 245–253[18]Andersson I, Backlund A. Structure and function of Rubisco. Plant Physiol Biochem, 2008, 46: 275–291[19]Peng L W, Yamamoto H, Shikanai T. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochimica et Biophysica Acta, 2011, 1807: 945–953[20]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol, 1987, 148: 350–382[21]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods, 2001, 25: 402–408[22]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome. Theor Appl Genet, 1998, 76: 815–829[23]Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China C Life Sci, 2009, 52: 885–890[24]Lan T, Wang B, Ling Q P, Xu C H, Tong Z J, Liang K J, Duan Y L, Jin J, Wu W R. Fine mapping of cisc(t), a gene for cold-induced seedling chlorosis, and identification of its candidate in rice. Chin Sci Bull, 2010, 55: 3149–3153[25]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001,125: 1248–1257[26]Von Gromoff E D, Alawady A, Meinecke L, Grimm B, Beck C F. Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell, 2008, 20: 552–567[27]Lee S, Ryoo N, Jeon J S, Guerinot M L, An G. Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency. Mol Cells, 2012, 33: 117–126[28]Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa N K. OsYSL16 plays a role in the allocation of iron. Plant Mol Biol, 2012, 79: 583–594[29]Hudson D, Guevara D R, Hand A J, Xu Z H, Hao L X, Chen X, Zhu T, Bi Y M, Rothstein S J. Rice Cytokinin GATA Transcription Factor1 regulates chloroplast development and plant Architecture. Plant Physiol, 2013, 162: 132–144[30]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795[31]李燕群, 钟萍, 高志艳, 朱柏羊, 陈丹, 孙昌辉, 王平荣, 邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析. 中国农业科学, 2014, 47: 2907–2915Li Y Q, Zhong P, Gao Z Y, Zhu B Y, Chen D, Sun C H, Wang P R, Deng X J. Morphological characterization and candidate gene analysis of zebra leaf mutant zebra524 in rice. Sci Agric Sin, 2014, 47: 2907–2915 (in Chinese with English abstract)[32]Gao Q S, Yang Z F, Zhou Y, Yin Z T, Qiu J, Liang G H, Xu C W. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155–163[33]Chappell J. The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol, 1995, 107: 1–6[34]Riley M V, Peters M I.The localization of the anion-sensitive ATPase activity in corneal endothelium. Biochim Biophys Acta, 1981, 644:251–256[35]Sharma R, Patel V, Krishna H. Relationship between light, fruit and leaf mineral content with albinism incidence in strawberry (Fragaria × ananassa Duch.). Sci Hortic, 2006, 109: 66–70[36]Broughton S. Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tiss Org Cult, 2008, 95: 185–195[37]Xu Z J, Nakajima M, Suzuki Y, Yamaguchi I. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol, 2002, 129:1285–1295[38]Bae J H, Sohn J H, Park C S, Rhee J S, Choi E S. Cloning and functional characterization of the SUR2/SYR2 gene encoding sphinganine hydroxylase in Pichia ciferrii. Yeast, 2004, 21: 437–443 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|