欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1155-1163.doi: 10.3724/SP.J.1006.2015.01155

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的水稻黄绿叶突变体的遗传分析及突变基因的精细定位

何旎清,柳周,张龙,白苏阳,田云录,江玲*,万建民   

  1. 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心 / 农业部长江中下游粳稻生物学与遗传育种重点实验室 / 长江流域杂交水稻协同创新中心,江苏南京210095
  • 收稿日期:2015-02-02 修回日期:2015-05-04 出版日期:2015-08-12 网络出版日期:2015-06-03
  • 通讯作者: 江玲, E-mail: jiangling@njau.edu.cn, Tel: 025-84399061
  • 基金资助:

    本研究由国家科技支撑计划项目(2013BAD01B02-16),江苏省科技支撑计划项目(BE2013301)和江苏省青蓝工程中青年学术带头人项目资助。

Genetic Analysis of a New Yellow-green Leaf Mutant and Fine-mapping of Mutant Gene in Rice

HE Ni-Qing,LIU Zhou,ZHANG Long,BAI Su-Yang,TIAN Yun-Lu,JIANG Ling*,WAN Jian-Min   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement / Research Center of Jiangsu Plant Gene Engineering / Ministry of Agriculture Key Laboratory of Biology / Genetics and Breeding of Japonica Rice in Mid-lower Yangtze River / The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2015-02-02 Revised:2015-05-04 Published:2015-08-12 Published online:2015-06-03
  • Contact: 江玲, E-mail: jiangling@njau.edu.cn, Tel: 025-84399061

摘要:

在水稻品种DongjinT-DNA插入突变体库中筛选到一份黄绿叶突变体T113,该突变体在生长的整个时期叶片都呈现黄绿色,且越到后期表型越明显。T113与野生型亲本Dongjin相比,叶片光合色素含量明显降低,株高变矮,结实率降低,每穗着粒数、穗长和千粒重均明显减少,抽穗期延迟,且黄绿叶性状不受温度影响,叶绿体中的类囊体排列较为疏松,出现更多的嗜锇体,叶绿素合成和质体发育相关基因表达量发生改变。遗传分析表明, T113的突变性状由1对隐性核基因控制。利用T113/N22F2群体,将突变基因定位在第2染色体长臂Indel标记CX2JX18之间,物理距离约为79 kb,此区间内包含12个预测基因。

关键词: 水稻, 黄绿叶突变体, 遗传分析, 精细定位

Abstract:

The yellow-green leaf mutant T113, which was isolated from a T-DNA mutant pool with Dongjin variety as the background material, showed a yellow-green leaf phenotype in whole developing stage. Compared with wild type, the contents of chlorophyll and carotenoid decreased, the yellow-green leaf became more and more obvious along with developing in T113. At maturity, the number of productive panicles per plant, panicle length, seed setting rate, 1000-grain weight and plant height reduced. The date of heading of T113 also delayed. The phenotype of mutant was not affected by temperature. Ultrastructural analysis showed that the chloroplast of mutant was brighter than that of wild type, the mutant developed loosed thylakoid lamellar structures. The expression of genes associated with chlorophyll biosynthetic and chloroplast development of T113 changed a lot. Genetic analysis showed that the yellow-green leaf trait of the T113 mutant was controlled by one pair of recessive nuclear genes. Genetic mapping of the mutant gene was conducted using a F2 mapping population of T113/N22. Finally, the mutant gene was mapped between Indel markers CX2 and JX18 on the long arm of chromosome 2 with physical distance of 79 kb, in which 12 predicted genes had been annotated.

Key words: Oryza sativa L., Yellow-green leaf mutant, Genetic analysis, Fine-mapping

[1]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet, 1997, 31: 61–89



[2]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyllsynthesis. Plant Physiol, 1996, 112: 821–832



[3]胡忠, 彭丽萍, 蔡永华. 一个黄绿色的水稻细胞核突变体. 遗传学报, 1981, 8: 256–261



Hu Z, Peng L P, Cai Y H. A yellow-green nucleus mutant of rice. Acta Genet Sin, 1981, 8: 256–261 (in Chinese with English abstract)



[4]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. .Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880



[5]Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004, 56: 1–14



[6]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312.



[7]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo S H, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337.



[8]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472



[9]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003



[10]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koi H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133



[11]Wu Z M, Zhang X, He B. Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40.



[12]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818



[13]Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143–152



[14]Lopez-Juez E. Plastid biogenesis between light and shadows. J Exp Bot, 2007, 58: 11–26



[15]Sakamoto W, Miyagishima S Y, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arabidopsis Book, 2008, 6: e110



[16]Webber A N, Malkin R. Photosystem I reaction-centre proteins contain leucine zipper motifs. A proposed role in dimer formation. FEBS Lett, 1990, 264: 1–4



[17]Rutherford A W, Faller P. Photosystem II: evolutionary perspectives. Philos Trans R SocLond B Biol Sci. 2003, 358: 245–253



[18]Andersson I, Backlund A. Structure and function of Rubisco. Plant Physiol Biochem, 2008, 46: 275–291



[19]Peng L W, Yamamoto H, Shikanai T. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochimica et Biophysica Acta, 2011, 1807: 945–953



[20]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol, 1987, 148: 350–382



[21]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods, 2001, 25: 402–408



[22]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome. Theor Appl Genet, 1998, 76: 815–829



[23]Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China C Life Sci, 2009, 52: 885–890



[24]Lan T, Wang B, Ling Q P, Xu C H, Tong Z J, Liang K J, Duan Y L, Jin J, Wu W R. Fine mapping of cisc(t), a gene for cold-induced seedling chlorosis, and  identification of its candidate in rice. Chin Sci Bull, 2010, 55: 3149–3153



[25]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001,125: 1248–1257



[26]Von Gromoff E D, Alawady A, Meinecke L, Grimm B, Beck C F. Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell, 2008, 20: 552–567



[27]Lee S, Ryoo N, Jeon J S, Guerinot M L, An G. Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency. Mol Cells, 2012, 33: 117–126



[28]Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa N K. OsYSL16 plays a role in the allocation of iron. Plant Mol Biol, 2012, 79: 583–594



[29]Hudson D, Guevara D R, Hand A J, Xu Z H, Hao L X, Chen X, Zhu T, Bi Y M, Rothstein S J. Rice Cytokinin GATA Transcription Factor1 regulates chloroplast development and plant Architecture. Plant Physiol, 2013, 162: 132–144



[30]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795



[31]李燕群, 钟萍, 高志艳, 朱柏羊, 陈丹, 孙昌辉, 王平荣, 邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析. 中国农业科学, 2014, 47: 2907–2915



Li Y Q, Zhong P, Gao Z Y, Zhu B Y, Chen D, Sun C H, Wang P R, Deng X J. Morphological characterization and candidate gene analysis of zebra leaf mutant zebra524 in rice. Sci Agric Sin, 2014, 47: 2907–2915 (in Chinese with English abstract)



[32]Gao Q S, Yang Z F, Zhou Y, Yin Z T, Qiu J, Liang G H, Xu C W. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155–163



[33]Chappell J. The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol, 1995, 107: 1–6



[34]Riley M V, Peters M I.The localization of the anion-sensitive ATPase activity in corneal endothelium. Biochim Biophys Acta, 1981, 644:251–256



[35]Sharma R, Patel V, Krishna H. Relationship between light, fruit and leaf mineral content with albinism incidence in strawberry (Fragaria × ananassa Duch.). Sci Hortic, 2006, 109: 66–70



[36]Broughton S. Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.). Plant Cell Tiss Org Cult, 2008, 95: 185–195



[37]Xu Z J, Nakajima M, Suzuki Y, Yamaguchi I. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol, 2002, 129:1285–1295



[38]Bae J H, Sohn J H, Park C S, Rhee J S, Choi E S. Cloning and functional characterization of the SUR2/SYR2 gene encoding sphinganine hydroxylase in Pichia ciferrii. Yeast, 2004, 21: 437–443

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!