欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1164-1171.doi: 10.3724/SP.J.1006.2015.01164

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻卷叶突变体rl28的特性与基因定位

冯萍**,邢亚迪**,刘松,郭爽,朱美丹,娄启金,桑贤春,何光华,王楠*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室 / 南方山地农业教育部工程研究中心,重庆 400716
  • 收稿日期:2015-01-04 修回日期:2015-04-02 出版日期:2015-08-12 网络出版日期:2015-05-04
  • 通讯作者: 王楠, E-mail: wangnan_xndx@126.com; Tel: 13752967156
  • 基金资助:

    本研究由国家自然科学基金青年科学基金项目(31301395), 国家公益性行业(农业)科研专项(201303129), 教育部博士点基金项目(20120182110024)和重庆市科技攻关计划项目(cstc2012ggB80004)资助。

Characterization and Gene Mapping of Rolled Leaf Mutant 28 (rl28) in Rice (Oryza sativa L.)

FENG Ping**,XING Ya-Di**,LIU Song,GUO Shuang,ZHU Mei-Dan,LOU Qi-Jin,SANG Xian-Chun,HE Guang-Hua,WANG Nan*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
  • Received:2015-01-04 Revised:2015-04-02 Published:2015-08-12 Published online:2015-05-04
  • Contact: 王楠, E-mail: wangnan_xndx@126.com; Tel: 13752967156

摘要:

叶片是光合作用的主要器官,适度卷曲有利于改善群体光照,提高光能利用率,因此,发掘和研究叶片发育相关基因是改良株型和植物生长发育研究的重要基础工作。本研究报道了一个新的水稻稳定遗传卷叶突变体rolled leaf 28 (rl28),与野生型相比,rl28从孕穗期起叶片开始沿中轴脉向内侧卷曲,叶片的卷曲度均极显著高于野生型,且叶夹角也不同程度小于野生型。扫描电镜及石蜡切片观察表明,rl28叶片单位面积气孔数、气孔导度显著高于野生型,蒸腾速率极显著高于野生型,rl28脉增大及临近的2个泡状细胞数量减少。遗传分析表明该突变性状受一对隐性核基因控制,RL28基因被定位在第5染色体标记5-435-34之间,物理距离为90 kb。本研究将为RL28基因的图位克隆及功能研究奠定基础。

关键词: 水稻(Oryza sativa L.), 卷叶突变体, 遗传分析, 基因定位

Abstract:

Leaves play a very important role in plant development for their function of photosynthesis. Moderate rolling leaves can facilitate the improvement of plant’s population structure and enhance light-use efficiency, which is very important in ideotype breeding. Therefore, the rolled leaf genes which regulate morphology in rice are important for exploring plant type and improving basic research in molecular biology. This study reported a new gene rolled leaf 28 (rl28), which was derived from EMS-treated restorer line Jinhui10. The mutational trait inherited steadily after several generations’ self-crossing. Compared with the wild-type, the leaves of rl28 began to curl along ?the vasculan bundle in medial axis from booting stage, leaf rolling index was significantly higher than that of the wild-type, and leaf angles were less than those of wild-type. Scanning electron microscopy and morphological analysis showed stoma number per 10-5 m2 and stomatal conductance were significantly higher than those of the wild-type, transpiration rate was significantly higher than that of wild-type. Compared with the wild-type, midrib of rl28 was much larger, and the number of the two adjacent vesicular cells decreased. Genetic analysis showed that the mutational trait was controlled by a single recessive nuclear gene. RL28 was finally mapped on chromosome 5 between SSR markers 5-43 and 5-34 with an interval of 90 kb. These results provide a foundation for cloning and function analysis of RL28.

Key words: Rice(Oryza sativa L.), Rolled leaf mutant, Genetic analysis, Gene mapping

[1]罗远章, 赵芳明, 桑贤春, 凌英华, 杨正林, 何光华. 水稻新型卷叶突变体rl12(t)的遗传分析和基因定位. 作物学报, 2009, 35: 1967–1972



Luo Y Z, Zhao F M, Sang X C, Ling Y H, Yang Z L, He G H. Genetic analysis and gene mapping of a novel rolled-leaf mutant RL12(t) in rice. Acta Agron Sin, 2009, 35: 1967–1972 (in Chinese with English abstract)



[2]陈宗祥, 左示敏, 张亚芳, 李磊, 潘雪彪, 马玉银. 水稻卷叶性状遗传及育种应用研究进展. 扬州大学学报, 2010, 31(4): 22–27



Chen Z X, Zuo S M, Zhang Y F, Li L, Pan X B, Ma Y Y. Current progress in genetics research and breeding application of rolled leaf in rice. J Yangzhou Univ, 2010, 31(4): 22–27 (in Chinese with English abstract)



[3]朱德峰, 林贤青, 曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较. 作物学报, 2001, 27: 329–333



 Zhu D F, Lin X C, Cao W X. Comparison of leaf photosynthetic characteristics among rice hybrids with different leaf rolling index. Acta Agron Sin, 2001, 27: 329–333 (in Chinese with English abstract)



[4]易继财, 曹友培, 梅曼彤. 一个辐射诱变的水稻卷叶突变体的特性研究. 核农学报, 2014, 28: 757–764



Yi J C, Cao Y P, Mei M T. Characterization of a 60Co-γ mutated rolled-leaf mutant in rice. J Nucl Agric Sci, 2014, 28: 757–764 (in Chinese with English abstract)



[5]田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华. 水稻卷叶基因RL13的遗传分析和分子定位. 作物学报, 2012, 38: 423–428



Tian X Q, Sang X C, Zhao F M, Li Y F, Ling Y H, Yang Z L, He G H. Genetic analysis and molecular mapping of a rolled leaf gene RL13 in rice (Oryza sativa L.). Acta Agron Sin, 2012, 38: 423–428 (in Chinese with English abstract)



[6]Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719–735



[7]Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99–108



[8]Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-eaf14 is a 2OG-Fe(II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524–532



[9]Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345–354



[10]Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589–1602



[11]Yang X, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803–816



[12]Zhao Y D, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291: 306–309



[13]Tobena-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J M N, Souer E, Koes R. FLOOZY of petunia is a flavin monooxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev, 2002, 16: 753–763



[14]Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H. Narrow leaf 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499–507



[15]高艳红, 吕川根, 王茂青, 王彭, 闫晓燕, 谢坤, 万建明. 水稻卷叶性状QTL的初步定位. 江苏农业学报, 2007, 23(1): 5–10



Gao Y H, Lü C G, Wang M Q, Wang P, Yan X Y, Xie K, Wan J M. QTL mapping for rolled leaf gene in rice. Jiangsu J Agric Sci, 2007, 23(1): 5–10 (in Chinese with English abstract)



[16]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregantion analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[17]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321–4325



[18]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707



Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)



[19]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Genet Genomics, 1996, 252: 597–607



[20]Xiang J J, Zhang G H, Qian Q, Xue H W. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488–1500



[21]Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitanabe H, Ashikari M, Matsuoka M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002, 32: 495–508



[22]Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718



[23]Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16: 500–509



[24]Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H Y. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J, 2011, 65: 77–86



[25]张静懿. 生长素调控气孔发育的功能和作用分子机理研究. 上海交通大学博士学位论文, 上海, 2014



Zhang J Y. The Molecular Mechanism and Function of Auxin Regulating Stomatal Development. PhD Dissertation of Shanghai Jiaotong University, Shanghai, China, 2014 (in Chinese with English abstract)



[26]Price A H, Young E M, Tomos A D. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytol, 1997, 137: 83–91



[27]李仕贵, 马玉清, 何平, 黎汉云, 陈英, 周开达, 朱立煌. 一个未知的卷叶基因的识别和定位. 四川农业大学学报, 1998, 16: 391–393



Li S G, Ma Y Q, He P, Li H Y, Chen Y, Zhou K D, Zhu L H. Genetic analysis and mapping the flag leaf roll in rice (Oryza sativa L.). J Sichuan Agric Univ, 1998, 16: 391–393 (in Chinese with English abstract)



[28]Shao Y J, Pan C H, Chen Z X, Zuo S M, Zhang Y F, Pan X B. Fine mapping of an incomplete recessive gene for leaf rolling in rice (Oryza sativa L.). Chin Sci Bull, 2005, 50: 2466–2472



[29]方佳, 何勇清, 余敏芬, 郑炳松. 植物生长素响应因子基因的研究进展. 浙江农林大学学报, 2012, 29: 611–616



Fang J, He Y Q, Yu M F, Zheng B S. Recent advances with auxin response factor (ARFs): a review. J Zhejiang A&F Univ, 2012, 29: 611–616 (in Chinese with English abstract)



[30]刘强, 张贵友. 植物转录因子的结构与调控作用. 科学通报, 2000, 45: 1465–1474



Liu Q, Zhang G Y. The structure and regulation in plant transcription factor. Chin Sci Bull, 2000, 45: 1465–1474 (in Chinese with English abstract)



[31]Laity J H, Lee B M, Wright P E. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struc Biol, 2001, 11: 39–46

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[5] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[6] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[7] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[8] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[9] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[10] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[11] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[12] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[13] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[14] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[15] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!