欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1183-1190.doi: 10.3724/SP.J.1006.2015.01183

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦DH155抗白粉病基因的分子作图及应用分子标记辅助选择将其转移

管昌英**,郭军**,薛凤博,张广旭,王宏伟,李安飞,孔令让*   

  1. 作物生物学国家重点实验室 / 山东农业大学农学院,山东泰安271018
  • 收稿日期:2015-01-28 修回日期:2015-05-04 出版日期:2015-08-12 网络出版日期:2015-06-03
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2012AA101105)和引进国际先进农业科学技术计划(948计划)国际合作项目(2013-S19)资助。

Molecular Mapping of Powdery Mildew Resistance Gene MlDH155 in Hexaploid Wheat DH155 and Its Transfer by Marker Assisted Selection

GUAN Chang-Ying**,GUO Jun**,XUE Feng-Bo,ZHANG Guang-Xu,WANG Hong-Wei,LI An-Fei,KONG Ling-Rang*   

  1. State Key Laboratory of Crop Biology / Shandong Agricultural University, Tai’an 271018, China?
  • Received:2015-01-28 Revised:2015-05-04 Published:2015-08-12 Published online:2015-06-03

摘要:

普通小麦品系DH155对白粉病菌表现高抗。为明确DH155所携带抗白粉病基因的遗传方式及与抗病基因连锁SSR标记,利用DH155与高感小麦品系SN2890杂交获得的F2F2:3群体进行接种鉴定和遗传分析,发现DH155对白粉菌菌株E09的抗性受1对显性基因控制,暂命名为MlDH155BSA和分子标记分析结果显示,MlDH155SSR标记Xcfd81Xcfd18连锁。利用已发表的中国春和粗山羊草D基因组序列开发新标记,进一步将MlDH155定位于标记XsdauK525XsdauK527之间,其遗传距离分别为0.2 cM0.8 cM。将DH155与感白粉病优良品系HB133-4和旱10杂交,在F2~F4代,结合优良农艺性状选择、分子标记辅助选择和抗白粉病鉴定,获得3个高抗白粉病且农艺性状优异的株系(SDAU2100SDAU2101SDAU2102)。利用14个白粉菌菌株对DH155进行苗期接种鉴定表明,DH15513个菌株表现抗病反应型。这些菌株对DH155的毒力谱与已知抗白粉病基因Pm2相似,但DH155Bg78-3Bg44-5菌株的反应型与携带Pm2Ulka/8*Cc不同。结合本试验结果和Pm2基因的相关报道,推测MlDH155可能是Pm2或其等位基因。

关键词: 小麦, DH155, 白粉病, 抗病基因, 分子标记

Abstract:

Hexaploid wheat (Triticum aestivum L.) line DH155 is highly resistant to wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt). To identify the Bgt resistance gene(s) in DH155, we developed an F2 population and its derived F2:3 families by crossing the resistant line DH155 with the susceptible line SN2890. The segregation ratios indicated that the seedling resistance to Bgt E09 in DH155 was controlled by a single dominant gene, which was tentatively designated MlDH155. By bulked segregation analysis, two codominant SSR markers, Xcfd81 and Xcfd18, were identified to be linked to MlDH155. To identify the closely linked markers to the targeted gene, we developed five new molecular markers based on the published D genome sequences of Chinese Spring and Aegilops tauschii, which permitted mapping of MlDH155 within an interval of 1.0 cM, flanked by XsdauK525 and XsdauK527. The Pm resistant line DH155 was crossed with two elite wheat lines (HB133-4 and Han 10) but susceptible to powdery mildew. Subsequently, two powdery mildew resistant lines with the genetic background of HB133-4 and one resistant line with Han 10 background were developed by genotypic and phenotypic selection, which were designated by the name of SDAU2100, SDAU2101 and SDAU2102, respectively. Among the 14 Bgt isolates tested at the seedling stage, DH155 was resistant to 13 and susceptible to 1 isolates. The virulence pattern of these Bgt isolates on DH155 was similar to that of the known powdery mildew resistance gene Pm2, but the reactions of DH155 to two Bgt isolates differed from those of Ulka/8*Cc carrying Pm2. Compared to previous studies about Pm2, MlDH155 was most likely to be either the same as or an allele of Pm2.

Key words: Triticum aestivum, DH155, Powdery mildew, Resistance gene, Molecular marker

[1]庄巧生. 中国小麦品种改良及系谱分析. 北京, 中国农业出版社, 2003



Zhuang Q S. Wheat Improvement and Pedigree Analysis in China. Beijing: China Agriculture Press, 2003 (in Chinese)



[2]何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44: 2193–2215



He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011, 44: 2193–2215 (in Chinese with English abstract)



[3]Everts K L, Leath S, Finney P L. Impact of powdery mildew on milling and baking quality of soft red winter wheat. Plant Dis, 2001, 85: 423–429



[4]Conner R L, Kuzyk A D, Su H. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci, 2003, 83: 725–728



[5]Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica, 2004, 137: 203–223



[6]Huang X Q, Hsam S L K, Zeller F J, Wenzel G, Mohler V. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet, 2000, 101: 407–414



[7]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013–2014. (http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf)



[8]Xiao M G, Song F J, Jiao J F, Wang X M, Xu H X, Li H J. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403



[9]周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535



Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract)



[10]Hsam, S, Zeller F, Bélanger R, Bushnell W, Dik A, Carver T. Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Bélanger R R, Bushnell W R, Dik A J, Carver T L W eds., The Powdery Mildews: a Comprehensive Treatise, St. Paul, MN, USA, 2002. pp 219–238



[11]韩利明, 张勇, 彭惠茹, 乔文臣, 何明琦, 王洪刚, 曲延英, 刘春来, 何中虎. 从产量和品质性状的变化分析北方冬麦区小麦品种抗热性. 作物学报, 2010, 36: 1538–1546



Han L M, Zhang Y, Peng H R, Qiao W C, He M Q, Wang H G, Qu Y Y, Liu C L, He Z H. Analysis of heat resistance for cultivars from north China winter wheat region by yield and quality traits. Acta Agron Sin, 2010, 36: 1538–1546 (in Chinese with English abstract)



[12]Briggle L W. Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis f. sp. tritici. Crop Sci, 1969, 9: 70–72



[13]Gao H D, Zhu F F, Jiang Y J, Wu J Z, Yan W, Zhang Q F, Jacobi A, Cai SB. Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet, 2012, 125: 967–973



[14]盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, (1): 49



Sheng B Q. Scoring powdery mildew with infection type at wheat seedling stage. Plant Prot, 1988 (1): 49 (in Chinese)



[15]Kong L R, Cambron S E, Ohm H W. Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Mol Breed, 2008, 21: 183–194



[16]The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, doi: 10.1126/science.1251788



[17]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95



[18]Kosambi D D. The estimation of map distance from recombination values. Ann Eugen, 1944, 12: 172–175



[19]Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/ EXP3.0. White head Institute Techn Rep, 1992



[20]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 1497–1504



[21]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451–1456



[22]Li T, Zhang Z Y, Hu Y K, Duan X Y, Xin Z Y. Identification and molecular mapping of a resistance gene to powdery mildew from the synthetic wheat line M53. J Appl Genet, 2011, 52: 137–143



[23]Pugsley A T, Carter M V. The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust J Biol Sci, 1953, 6: 335–346



[24]McIntosh R A, Baker E P. Cytogenetical studies in wheat: IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970, 19: 71–77



[25]Qiu Y C, Sun X L, Zhou R H, Kong X Y, Zhang S S, Jia J Z. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun, 2006, 34: 1267–1273



[26]Huang J, Zhao Z H, Song F J, Wang X M, Xu H X, Huang Y, An D G, Li H J. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol Breed, 2012, 30: 1737–1745



[27]Ma P, Xu H, Luo Q, Qie Y, Zhou Y, Xu Y, Han H, Li L, An D. Inheritance and genetic mapping of a gene for seedling resistance to powdery mildew in wheat line X3986-2. Euphytica, 2014, 200: 149–157



[28]Hsam S, Huang X, Ernst F, Hartl L, Zeller F. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 5. Alleles at the Pm1 locus. Theor Appl Genet, 1998, 96: 1129–1134



[29]Singrun C H, Hsam S, Hartl L, Zeller F, Mohler V. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet, 2003, 106: 1420–1424



[30]Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S. A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed, 2012, 29: 449–456



[31]张海泉. 小麦抗白粉病分子育种研究进展. 中国生态农业学报, 2008, 16: 1060–1066



Zhang H Q. Research advances in molecular breeding of powdery mildew resistance of wheat. Chin J Eco-Agric, 2008, 16: 1060–1066 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!