欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (03): 344-352.doi: 10.3724/SP.J.1006.2016.000344

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜结角高度与荚层厚度的全基因组关联分析

卢坤1,**,王腾岳1,**,徐新福1,唐章林1,曲存民1,贺斌2,梁颖1,李加纳1,*   

  1. 1 西南大学农学与生物科技学院, 重庆 400716; 2云南省临沧市农业技术推广站, 云南临沧 677000
  • 收稿日期:2015-08-24 修回日期:2015-11-20 出版日期:2016-03-12 网络出版日期:2015-12-07
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2015CB150201), 国家自然科学基金项目(U1302266, 31401412), 引进国际先进农业科学技术计划(948计划)项目(2011-G23), 国家科技支撑计划项目(2013BAD01B03-12)和高等学校学科创新引智计划(111计划)项目(B12006)资助。

Genome-Wide Association Analysis of Height of Podding and Thickness of Pod Canopy in Brassica napus

LU Kun1,**,WANG Teng-Yue1,**,XU Xin-Fu1,TANG Zhang-Lin1,QU Cun-Ming1,HE Bin2,LIANG Ying1,LI Jia-Na1,*   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; 2 Agricultural Technology Extension Stationin Lincang City, Lincang 677000, China
  • Received:2015-08-24 Revised:2015-11-20 Published:2016-03-12 Published online:2015-12-07
  • Supported by:

    This study was supported by the National Basic Research Program of China (973 Program) (2015CB150201), the National Science Foundation of China (U1302266 and 31401412), the Program of Introducing International Super Agricultural Science and Technology(948 Program) (2011-G23), the Key Technologies Research and Development Program of China (2013BAD01B03-12) and the 111 Project (B12006).

摘要:

角果是油菜重要的光合作用和种子存储器官,对油菜产量具有重要贡献。本研究以412份具有代表性的甘蓝型油菜品种(系)为材料,利用芸薹属60K Illumina Infinium SNP芯片对其基因型分析,并对油菜结角高度和角果层厚度进行全基因组关联分析。结果共检测到16个显著关联的SNP,其中重庆环境下分别检测到2个和4个SNP与结角高度和结角层厚度显著关联,单个SNP解释的表型变异为5.61%~5.69%和5.94%~6.31%。云南环境下分别检测到5个和1个显著关联的SNP,单个标记解释的表型变异为12.66%~13.97%和22.43%。对2个环境的结角高度差和结角层厚度差共检测到3个和1个与性状显著相关的SNP,它们对表型变异的解释率分别为17.33%~20.32%和29.05%。其中,环境间结角厚度差的关联SNP与重庆环境结角层厚度的1个显著关联SNP位于同一LD区间。各显著关联标记LD区段的多个基因调节植物细胞组织发生、花分生组织发育、角果数目和多器官发育,如NSN1TPSTSAC1等,它们可能通过上述功能影响油菜花序或角果的生长发育,导致结角高度或结角层厚度差异。本研究发掘的这些位点和候选基因可作为影响油菜结角高度和角果层厚度的重要候选区域和基因,为揭示油菜结角性状的遗传基础和分子机制,提高油菜单位面积产量奠定了基础。

关键词: 甘蓝型油菜全基因组关, 联分析, 结角高度, 结角层厚度, 产量

Abstract:

Layer of pod canopy is an important photosynthetic and seed storage part in rapeseed, providing important contribution to yield. In this study, 412 representative Brassica napus varieties (or lines) were genotyped using the Brassica 60 K Illumina Infinium SNP array by genome-wide association analysis of the height of podding (HP) and thickness of pod canopy (TPC). A total of 16 significant SNPs were identified, including two and four SNPs associated with HP and TPC in Chongqing, each of them explained 5.61%–5.69% and 5.94%–6.31% of phenotypic variation, respectively. Five and one significant SNPs accounting for 12.66%–13.97% and 22.43% of the phenotypic variation for HP and TPC in Yunnan, respectively, were also detected. Three and one significant SNPs associated with the difference of HP and TPC between two environments were detected, explaining 17.33%–20.32% and 29.05% of phenotypic variation, respectively. The latter SNP marker was located in the same linkage disequilibrium (LD) interval with one of significant SNPs related to TPC in Chongqing. Functional annotation of genes within the LD intervals containing significant markers showed that several genes involved in regulation of cell organization and biogenesis, floral meristem development, number of silique, and multicellular organismal development existed, such as NSN1, TPST, and SAC1, which might result in the variation of HP and TPC through affecting the growth and development of flower or silique in B. napus. These loci and genes could be regarded as important candidate regions and genes for HP and TPC of B. napus. The results lay the foundation for revealing the genetic basis and molecular mechanism for podding traits, and improving the yield per unit area of B. napus.

Key words: Brassica napus, Genome-wide association analysis, Height of podding, Thickness of pod canopy, Yield

[1]  官春云. “农业科技创新与服务”笔谈:依托科技创新与服务加快油菜产业发展方式转变. 湖南农业大学学报(社会科学版), 2010, 11(4): 1–3

Guan C Y. Pen talk on innovation and service of agricultural science and technology: accelerate change of rapeseed industry development mode based on scientific and technological innovation. J Hunan Agric Uni (Soc Sci), 2010, 11(4): 1–3 (in Chinese with English abstract)

[2]  王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010, 32: 300–302

Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010, 32: 300–302

[3]  Özer H, Oral E, Dogru U. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turk J Agric For, 1999, 23: 603–608

[4]  Chen W, ZhangY, Liu X, Chen B, Tu J, Fu T. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849–858

[5]  DiepenbrockW. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49

[6]  Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182: 851–861

[7]  Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113:549–561

[8]  吴建忠. 甘蓝型油菜几个农艺性状对产量的影响. 中国科技论文在线精品论文, 2011, 4: 1737–1741

Wu J Z. The effects of several agronomic traits on yield in Brassica napus L. Highlights Sciencepaper Online, 2011, 4: 1737–1741 (in Chinese with English abstract)

[9]  漆丽萍. 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014. pp 45–73

Qi L P. QTL analysis for the traits associated with plant architecture and silique in Brassica napus L.. PhD Disseration of Huazhong Agricultural University, Wuhan, China, 2014. pp 45–73 (in Chinese with English abstract)

[10]  王道杰, 杨翠玲, 李艳萍, 王再青. 因子分析和数量分类在油菜种质资源遗传多样性研究中的应用. 植物学研究, 2014, 3: 207–217

Wang D, Yang C, Li Y, Wang Z. Factor analysis and numerical taxonomy applied in the research of germpasm genetic polymorphism in Brassica napus L. Bot Res, 2014, 3: 207–217 (in Chinese with English abstract)

[11]  张书芬, 傅廷栋, 朱家成, 王建平, 文雁成, 马朝芝. 甘蓝型油菜产量及其构成因素的QTL定位与分析. 作物学报, 2006, 32: 1135–1142

Zhang S F, Fu T D, Zhu J C, Wang J P, Wen Y C, Ma C Z. QTL mapping and epistasis analysis for yield and its components in Brassica napus L. Acta Agron Sin, 2006, 32: 1135–1142 (in Chinese with English abstract)

[12]  王峰, 官春云. 甘蓝型油菜遗传图谱的构建及单株产量构成因素的QTL分析. 遗传, 2010, 32: 271–277

Wang F, Guan C Y. Molecular mapping and identification of quantitative trait loci foryield components in rapeseed (Brasscia napus L.). Hereditas (Beijing), 2010, 32(3): 271–277 (in Chinese with English abstract)

[13] Chen W, Zhang Y, Yao J, Ma C, Tu J, Fu T. Quantitative trait loci mapping for two seed yield component traits in an oilseed rape (Brassica napus) cross. Plant Breed, 2011, 130: 640–646

[14] Chalhoub B, Denoeud F, Liu S, Parkin I A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H D, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H D, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953

[15] Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X.A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2015, doi:10.1016/j.plantsci.2015.05.012

[16] Luo X, Ma C, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J, Shen J, Yi B, Fu T. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genom, 2015, 16: 379

[17] Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014, 21: 355–367

[18] Hatzig S V, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M H, Leckband G, Abbadi A, Snowdon R J. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci, 2015, 6: 221

[19] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959

[20] Earl D A, vonHoldt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359–361

[21] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635

[22] Ginestet C. ggplot2: elegant graphics for data analysis. J Roy Stat Soc A, 2011, 174: 245–246

[23] Turner S D. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014:005165

[24] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263–265

[25] 杨光. 油菜高效结角层结构的研究, 扬州大学硕士学位论文, 江苏扬州, 2002. p 11

Yang G. The study of high-efficient pod canopy of oilseed rape. Master Disseration of Yangzhou University, Yangzhou, China, 2022. p 11 (in Chinese with English abstract)

[26] 浦惠明, 戚存扣, 傅寿仲. 油菜角果的生长特性及其源库效应. 江苏农业科学, 1993, 3: 22–25

Pu H M, Qi C K, Fu S Z. Growth characteristic of pod and source-sink response in oilseed. Jiangsu Agric Sci, 1993, 3: 22–25 (in Chinese with English abstract)

[27] 冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250–257

Leng S H, Zhu G R, Deng X L. Studies on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250–257 (in Chinese with English abstract)

[28] Jeon Y, Park Y J, Cho H K, Jung H J, Ahn T K, Kang H, Pai H S. The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis. J ExpBot, 2015: erv337

[29] Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y. Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 15067–15072

[30] Zhong R, Burk D H, Nairn C J, Wood-Jones A, Morrison W H, Ye Z H. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell, 2005, 17: 1449–1466
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!