欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 1067-1073.doi: 10.3724/SP.J.1006.2016.01067

• 研究简报 • 上一篇    下一篇

小麦花发育MADS-box基因的表达模式分析

李海峰1,2,*,韩英1,王冰华1,苏亚丽1,孙其信1,*   

  1. 1西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室,陕西杨凌 712100; 2新疆农业职业技术学院,新疆昌吉 831100
  • 收稿日期:2015-11-24 修回日期:2016-03-14 出版日期:2016-07-12 网络出版日期:2016-05-09
  • 通讯作者: 李海峰, E-mail: lhf@nwsuaf.edu.cn; 孙其信, E-mail: qxsun@cau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31571657), 中央高校基本科研业务费和新疆农业职业技术学院科研项目(XJNZYKJ201501)资助。

Expression Patterns of MADS-box Genes Related to Flower Development of Wheat

LI Hai-Feng1,2,*,HAN Ying1,LIU Meng-Jia1,WANG Bing-Hua1,SU Ya-Li1,SUN Qi-Xin1,*   

  1. 1 State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Xinjiang Agriculture Vocational Technology College, Changji 831100, China
  • Received:2015-11-24 Revised:2016-03-14 Published:2016-07-12 Published online:2016-05-09
  • Contact: 李海峰, E-mail: lhf@nwsuaf.edu.cn; 孙其信, E-mail: qxsun@cau.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31571657), the Fundamental Research Foundation for the Central Universities (2014ZZ009), and the Foundation of Xinjiang Agriculture Vocational Technology College (XJNZYKJ201501).

摘要:

为解析小麦花发育的分子机制,构建了MADS-box基因系统进化树,发现小麦中存在花发育ABCDE模型的各类基因。半定量RT-PCR和定量RT-PCR分析结果显示,A类基因AP1/FUL小麦中的同源基因TaFUL在所有花器官中都表达,在外稃和內稃中表达水平最高。B类基因TaAP3和C类基因TaAG的表达模式保守,TaAP3在浆片和雄蕊中表达,TaAG在雄蕊和雌蕊中表达。D类基因OsMADS13的同源基因除了在雌蕊表达外,在浆片也有较高的表达,暗示该基因可能同时影响胚珠和浆片的发育。E类基因TaSEP在内稃和内三轮器官表达,在外稃和护颖中不表达。LHS1是禾本科特有的MADS-box基因亚家族,发挥E类基因的功能。TaLHS1除了在內稃和外稃表达,在护颖中也有表达。水稻中控制心皮发育的DROOPING LEAF(DL)基因的同源基因TaDL除了在外稃和心皮表达外,在护颖中也有表达。根据这些结果,我们认为控制小麦花发育的分子机制比较保守,但部分基因功能在进化过程中可能发生了分化。另外,结合小麦外稃和护颖形态结构分析,TaLHS1以及TaDL的表达模式暗示小麦的护颖和外稃这两个器官可能有共同的起源。

关键词: 小麦, 花器官发育, MADS-box基因, 表达模式

Abstract:

 The objective of this study was to elucidate the molecular mechanism of wheat (Triticum aestivum L.) flower development. According to the phylogenetic tree of MADS- box genes from different species, we found that wheat contained all kinds of genes involved in the ABCDE model for flower development. The expression patterns of A-, B-, C-, D-, and E-class genes were analyzed by semi-quantitative and quantitative RT-PCR (qRT-PCR). Wheat AP1/FUL gene TaFUL (A-class) was expressed in all floral organs with the highest expression level in lemmas and paleas. Genes TaAP3 (B-class), TaAG (C-class) showed conservative expression patterns in specific organs, i.e., TaAP3 was expressed in lodicules and stamens whereas TaAG was expressed in stamens and pistils. The OsMADS13 homologous gene in wheat (D-class) was expressed in both pistils and lodicules, suggesting its function in lodicule and ovule development simultaneously. Gene TaSEP (E-class) was expressed in paleas and the inner-three whorls except for lemmas and glumes. LHS1 is a grass-specific gene family and belongs to E-class. The expression of TaLHS1 was detected in lemmas, paleas, and glumes of wheat. TaDL, the homologous gene of rice DROOPING LEAF (DL) controlling carpel development, was expressed in glumes, lemmas and carpels. These results suggest a conservative molecular mechanism for flower development in wheat, but some genes may have diversified functions due to evolution. The expression evidence of TaDL and TaLHS1 in glumes, in combination with the morphology and structure analyses of glume, lemma and palea, implied that lemma and glume might originate from the same organ in wheat.

Key words: Wheat, Flower development, MADS- box gene, Expression pattern

[1] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 199, 353: 31–37
[2] Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200–203
[3] Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4: 75–85
[4] Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z. DEP and AFO regulate reproductive habit in rice. PLoS Genet, 2010, 6: e1000818
[5] Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MAD-box genes and PAP2, a SEPALLATA MADS-box gene. Plant Cell, 2012, 24: 1848–1859
[6] Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718
[7] Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS-box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28
[8] Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk P B, An G, Colombo L, Kater M M. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J, 2007, 52: 690–699
[9] Dreni L, Pilatone A, Yun D, Erreni S, Pajoro A, Caporali E, Zhang D, Kater M M. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Plant Cell, 2011, 23: 2850–2863
[10] Li H, Liang W, Yin C, Zhu L, Zhang D. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol, 2011, 156: 263–274
[11] Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J, 2010, 61: 767–781
[12] Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol, 2010, 153: 728–740
[13] Lin X, Wu F, Du X, Shi X, Liu Y, Liu S, Hu Y, Theissen G, Meng Z. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. New Phytol, 2014, 202: 689–702
[14] Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16: 500–509
[15] Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater M M, Zhang D. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell, 2011, 23: 2536–2552
[16] 王兆龙. 小麦小花发育的生理基础及调控研究. 南京农业大学博士学位论文, 江苏南京, 2000. pp 3–4
Wang Z L. Physiological Basis and Regulation of Floret Development in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2000. pp 3–4 (in Chinese with English abstract)
[17] 刘楠, 李海峰, 窦艳华, 韩德俊. 普通小麦及其近缘物种花序、小穗和小花的形态结构分析. 麦类作物学报, 2015, 35: 293–299
Liu N, Li H F, Dou Y H, Han D J. Morphology and structure analyses on inflorescence, spikelet and floret of bread wheat and its relatives. J Triticeae Crops, 2015, 35: 293–299 (in Chinese with English abstract)
[18] Paolacci AR, Tanzarella OA, Porceddu E, Varotto S, Ciaffi M. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Mol Genet Genomics, 2007, 278: 689–708
[19] Ishikawa M, Ohmori Y, Tanaka W, Hirabayashi C, Murai K, Ogihara Y, Yamaguchi T, Hirano H Y. The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes Genet Syst, 2009, 84: 137–146
[20] Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS-box gene in hexaploid wheat. Plant Cell, 2007, 19: 1723–1737
[21] Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics, 2006, 276: 334–350
[22] Zhao X Y, Cheng Z J, Zhang X S. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223: 698–707
[23] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739
[24] 窦艳华, 韩萌萌, 孙其信, 李海峰. 二穗短柄草MADS-BOX基因AGL6和FUL1的可变拼接和表达模式分析. 农业生物技术学报, 2015, 23: 459–468
Dou Y H, Han M M, Sun Q X, Li H F. Alternative splicing and expression pattern analyses of two MADS-BOX genes AGL6 and FUL1 in Brachypodium distachyon. J Agric Biotechnol, 2015, 23: 459–468 (in Chinese with English abstract)
[25] Li H F, Liang W Q, Jia R D, Yin C S, Zong J, Kong H Z, Zhang D B. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res, 2010, 20: 299–313
[26] Jack T, Brockman L L, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell, 1992, 68: 683–697
[27] Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5: 569–579
[28] Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant & Cell Physiol, 2010, 51: 47–57
[29] Yoshida A, Suzaki T, Tanaka W, Hirano HY. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA, 2009, 106: 20103–20108
[30] Hong L, Qian Q, Zhu K, Tang D, Huang Z, Gao L, Li M, Gu M, Cheng Z. ELE restrains empty glumes from developing into lemmas. J Genet Genomics, 2010, 37: 101–115

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!