[1] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 199, 353: 31–37
[2] Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200–203
[3] Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4: 75–85
[4] Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z. DEP and AFO regulate reproductive habit in rice. PLoS Genet, 2010, 6: e1000818
[5] Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MAD-box genes and PAP2, a SEPALLATA MADS-box gene. Plant Cell, 2012, 24: 1848–1859
[6] Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705–718
[7] Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano H Y. Functional diversification of the two C-class MADS-box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 2006, 18: 15–28
[8] Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk P B, An G, Colombo L, Kater M M. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J, 2007, 52: 690–699
[9] Dreni L, Pilatone A, Yun D, Erreni S, Pajoro A, Caporali E, Zhang D, Kater M M. Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Plant Cell, 2011, 23: 2850–2863
[10] Li H, Liang W, Yin C, Zhu L, Zhang D. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol, 2011, 156: 263–274
[11] Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J, 2010, 61: 767–781
[12] Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol, 2010, 153: 728–740
[13] Lin X, Wu F, Du X, Shi X, Liu Y, Liu S, Hu Y, Theissen G, Meng Z. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. New Phytol, 2014, 202: 689–702
[14] Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16: 500–509
[15] Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater M M, Zhang D. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell, 2011, 23: 2536–2552
[16] 王兆龙. 小麦小花发育的生理基础及调控研究. 南京农业大学博士学位论文, 江苏南京, 2000. pp 3–4
Wang Z L. Physiological Basis and Regulation of Floret Development in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2000. pp 3–4 (in Chinese with English abstract)
[17] 刘楠, 李海峰, 窦艳华, 韩德俊. 普通小麦及其近缘物种花序、小穗和小花的形态结构分析. 麦类作物学报, 2015, 35: 293–299
Liu N, Li H F, Dou Y H, Han D J. Morphology and structure analyses on inflorescence, spikelet and floret of bread wheat and its relatives. J Triticeae Crops, 2015, 35: 293–299 (in Chinese with English abstract)
[18] Paolacci AR, Tanzarella OA, Porceddu E, Varotto S, Ciaffi M. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Mol Genet Genomics, 2007, 278: 689–708
[19] Ishikawa M, Ohmori Y, Tanaka W, Hirabayashi C, Murai K, Ogihara Y, Yamaguchi T, Hirano H Y. The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes Genet Syst, 2009, 84: 137–146
[20] Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS-box gene in hexaploid wheat. Plant Cell, 2007, 19: 1723–1737
[21] Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics, 2006, 276: 334–350
[22] Zhao X Y, Cheng Z J, Zhang X S. Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223: 698–707
[23] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739
[24] 窦艳华, 韩萌萌, 孙其信, 李海峰. 二穗短柄草MADS-BOX基因AGL6和FUL1的可变拼接和表达模式分析. 农业生物技术学报, 2015, 23: 459–468
Dou Y H, Han M M, Sun Q X, Li H F. Alternative splicing and expression pattern analyses of two MADS-BOX genes AGL6 and FUL1 in Brachypodium distachyon. J Agric Biotechnol, 2015, 23: 459–468 (in Chinese with English abstract)
[25] Li H F, Liang W Q, Jia R D, Yin C S, Zong J, Kong H Z, Zhang D B. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res, 2010, 20: 299–313
[26] Jack T, Brockman L L, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell, 1992, 68: 683–697
[27] Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5: 569–579
[28] Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant & Cell Physiol, 2010, 51: 47–57
[29] Yoshida A, Suzaki T, Tanaka W, Hirano HY. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA, 2009, 106: 20103–20108
[30] Hong L, Qian Q, Zhu K, Tang D, Huang Z, Gao L, Li M, Gu M, Cheng Z. ELE restrains empty glumes from developing into lemmas. J Genet Genomics, 2010, 37: 101–115 |