欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1103-1111.doi: 10.3724/SP.J.1006.2016.01103

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应

汪文祥,胡琼,梅德圣,李云昌,周日金,王会,成洪涛,付丽,刘佳*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室,湖北武汉430062
  • 收稿日期:2016-01-14 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-05-30
  • 通讯作者: 刘佳, E-mail: liujia02@caas.cn, Tel: 027-86711556
  • 基金资助:

    本研究由中国农业科学院科技创新工程(Group No. 118), 国家农业现代产业技术体系建设专项(CARS-13),国家自然科学基金(31471535),湖北省自然科学基金(2014CFB156)和湖北省科技创新工程资助。

Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L.

WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
  • Received:2016-01-14 Revised:2016-05-09 Published:2016-08-12 Published online:2016-05-30
  • Contact: 刘佳, E-mail: liujia02@caas.cn, Tel: 027-86711556
  • Supported by:

    This study was support by the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (Group No. 118), the Earmarked Fund for China Agriculture Research System (CARS-13), the Natural Science Foundation of China (31471535), the Natural Science Foundation of Hubei Province (2014CFB156) and the Hubei Agricultural Science and Technology Innovation Center.

摘要:

分枝角度是油菜株型重要性状,是油菜品种高产及适合机械化收获理想株型的基本组成之一。为明确油菜分枝角度的遗传,本研究选用油菜分枝角度大的松散型材料6098B和分枝角度小的紧凑型材料Purler配制杂交组合,采用主基因+多基因混合遗传模型方法对该组合6世代(P1、P2、F1F2、BCP1和BCP2)的分枝角度进行了遗传分析。结果表明,上部第一分枝(顶枝)和基部第一分枝(基枝)角度的最适合遗传模型均为D-0 (1对加性-显性主基因+加性-显性-上位性多基因)。顶枝角的主基因加性效应值为4.939º,显性效应值为–4.156º,主基因遗传率在BCP1、BCP2和F2中分别是34.08%、1.40%和14.99%,多基因遗传率分别为24.43%、61.72%和63.98%;而基枝角的主基因加性效应值为2.217º,显性效应值为–1.941º,主基因遗传率在BCP1、BCP2和F2中分别是7.86%、1.24%和4.84%,多基因遗传率分别为66.46%、58.49%和73.96%。结果发现油菜分枝角度明显存在主效基因,为油菜分枝角度的遗传改良奠定了基础。

关键词: 油菜, 分枝角度, 理想株型, 主基因+多基因, 遗传效应

Abstract:

Branch angle is one of important plant architectural traits in rapeseed (Brassica napus), which is the basic requirement for high-density cultivation and mechanical harvesting. To reveal the genetic mechanism of branch angle in rapeseed, we produced six generations (P1, P2, F1, F2, BCP1, and BCP2) from a cross between loose-type 6098B and compact-type Purler to analyze genetic effects of branch angle in rapeseed by the mixed major gene plus polygene inheritance model. The branch angle showed a continuous normal distribution, where both the basal branch angle and the top branch angle were dominated by a pair of major gene with additive-dominant effects plus polygenes with additive-dominance-epistasis effects (D-0 model). The additive effect and dominant effect of major gene of the top branch angle were 4.939 and –4.156, the heritability in BCP1, BCP2 and F2 was 34.08%, 1.40%, and 14.99%, respectively for the major gene, and 24.43%, 61.72%, and 63.98%, respectively for the polygenes. The additive effect and dominant effect of major gene of the basal branch angle were 2.217 and –1.941, the heritability in BCP1, BCP2 and F2 was 7.86%, 1.24%, and 4.84%, respectively for the major gene, and 66.46%, 58.49%, and 73.96%, respectively for the polygenes. Results of this study found that the branch angle traits of 6098B×Purler is controlled by polygenes, but there is a major gene among them. The research may be useful for further understanding and genetic improvement of plant architecture in rapeseed.

Key words: Brassica napus L., Branch angle, Ideal plant architecture, Major gene plus polygene, Genetic effects

[1] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014, 36: 414–421
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014, 36: 414–421 (in Chinese with English abstract)
[2] 唐敏强, 程晓晖, 童超波, 刘越英, 赵传纪, 董彩华, 于景印, 马小艮, 黄军艳, 刘胜毅. 甘蓝型油菜株高性状的全基因组关联分析. 作物学报, 2015, 41: 1121–1126
Tang M Q, Cheng X H, Tong C B, Liu Y Y, Zhao C J, Dong C H, Yu J Y, Ma X G, Huang J Y, Liu S Y. Genome-wide association analysis of plant height in rapeseed (Brassica napus). Acta Agron Sin, 2015, 41: 1121–1126 (in Chinese with English abstract)
[3] 王嘉, 荆凌云, 荐红举, 曲存民, 谌利, 李加纳, 刘列钊. 甘蓝型油菜株高、第一分枝高和分枝数的QTL检测及候选基因筛选. 作物学报, 2015, 41: 1027–1038
Wang J, Jing L Y, Jian H J, Qu C M, Chen L, Li J N, Liu L Z. Quantitative trait loci mapping for plant height, the first branch height, and branch number and possible candidate genes screening in Brassica napus L. Acta Agron Sin, 2015, 41: 1027–1038 (in Chinese with English abstract)
[4] 张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅. 利用高密度SNP标记定位甘蓝型油菜株高QTL. 中国油料作物学报, 2014, 36: 695–700
Zhang F Q, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y. QTL mapping of plant heigh using high desity SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014, 36: 695–700 (in Chinese with English abstract)
[5] 谢田田, 陈玉波, 黄吉祥, 张尧锋, 徐爱遐, 陈飞, 倪西源, 赵坚义. 甘蓝型油菜不同发育时期株高QTL的动态分析. 作物学报, 2012, 38: 1802–1809
Xie T T, Chen Y B, Huang J X, Zhang Y F, Xu A X, Chen F, Ni X Y, Zhao J Y. Dynamic analysis of QTL for plant height of rapeseed at different developmental stages. Acta Agron Sin, 2012, 38: 1802–1809 (in Chinese with English abstract)
[6] Xu J S, Song X, Cheng Y, Zou X L, Zeng L, Qiao X, Lu G Y, Fu G P, Qu Z, Zhang X K. Identification of QTLs for branch number in oilseed rape (Brassica napus L.). J Genet Genom, 2014, 41: 557–559
[7] Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Zhang T Y, Takeshi Nishio, Wu X M. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2015, 242: 169–177
[8] 王俊生, 李少钦, 张耀文. 不同栽培密度对紧凑型油菜产量和主要性状的影响. 耕作与栽培, 2006, (3): 25–26
Wang J S, Li S Q, Zhang Y W. Effects of different planting density on yield and main characters of compact in rapeseed. Gengzuo yu Zaipei, 2006, (3): 25–26 (in Chinese)
[9] 张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位. 西南大学硕士学位论文, 重庆, 2013. pp 3–7
Zhang Q. Genetic Effects Analysis and QTL Mapping of Major Plant-Type Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2013. pp 3–7 (in Chinese with English abstract)
[10] 张文学, 李殿荣, 田建华. 甘蓝型油菜紧凑型和松散型杂种一代分枝性状的遗传效应. 中国农学通报, 2000, 16(5): 17–19
Zhang W X, Li D R, Tian J H. Genetic effect of hybrid F1 branching character of CCT and LCT in Brassica napus. Chin Agric Sci Bull, 2000, 16(5): 17–19 (in Chinese with English abstract)
[11] 王俊生, 田建华, 张继澍, 李殿荣, 袁志发. 紧凑型油菜株型性状的遗传及其与主要产量性状的相关性研究. 西北农林科技大学学报(自然科学版), 2005, 33: 7–12
Wang J S, Tian J H, Zhang J S, Li D R, Yuan Z F. Study on the heredity of plant-type traits in compact rapeseed lines and the genetic correlation with yield traits. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2005, 33: 7–12 (in Chinese with English abstract)
[12] 唐佳. 甘蓝型油菜株型相关性状的杂种优势及配合力分析. 四川农业大学硕士学位论文, 四川成都, 2012. pp 3–7
Tang J. Analyses on Heterosis and Combining Ability of the Traits Related to Plant Types in Brassica napus L. MS Thesis of Sichuan Agricultural University, Sichuan, China, 2014. pp 3–7 (in Chinese with English abstract)
[13] 漆丽萍. 甘蓝型油菜株型与角果相关性状的QTL分析. 华中农业大学博士学位论文, 湖北武汉, 2014. pp 11–12
Qi L P. QTL Analysis for Traits Associated with Plant Architecture and Silique in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, wuhan, China, 2014. pp 11–12 (in Chinese with English abstract)
[14] Liu J, Wang W, Mei D, Wang H, Fu L, Liu D, Li Y, Hu Q. Characterising variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci, 2016, 7: 21
[15] 盖钧镒. 植物数量性状遗传体系. 科学出版社, 2003. pp 224−265, 351−370
Gai J Y. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. pp 224−265, 351−370 (in Chinese)
[16] 李余生, 朱镇, 张亚东, 赵凌, 王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析. 作物学报, 2008, 34: 1728–1733
Li Y S, Zhu Z, Zhang Y D, Zhao L, Wang C L. Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin, 2008, 34: 1728–1733 (in Chinese with English abstract)
[17] 周清元, 崔翠, 阴涛, 陈东亮, 张正圣, 李加纳. 甘蓝型油菜角果长度的主基因+多基因混合遗传模型. 作物学报, 2014, 40: 1493–1500
Zhou Q Y, Cui C, Yin T, Chen D L, Zhang Z S, Li J N. Genetic analysis of silique length using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2014, 40: 1493–1500 (in Chinese with English abstract)
[18] 金岩, 吕艳艳, 付三雄, 戚存扣. 甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析. 作物学报, 2014, 40: 1964–1972
Jin Y, Lu Y Y, Fu S X, Qi C K. Inheritance of major gene plus polygene of water-logging tolerance in Brassica napus L. Acta Agron Sin, 2014, 40: 1964–1972 (in Chinese with English abstract)
[19] 田露申, 牛应泽, 余青青, 郭世星, 柳丽. 甘蓝型油菜白花性状的主基因+多基因遗传分析. 中国农业科学, 2009, 42: 3987–3995
Tian L S, Niu Y Z, Yu Q Q, Guo S X, Liu L. Genetic analysis of white flower color with mixed model of major gene plus polygene in Brassica napus L. Sci Agric Sin, 2009, 42: 3987–3995 (in Chinese with English abstract)
[20] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34: 376–381
Gu H, Qi C K. Genetic analysis of lodging resistance with mixed model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2008, 34: 376–381 (in Chinese with English abstract)
[21] 王会, 桑世飞, 梅德圣, 李云昌, 刘佳, 付丽, 王军, 陈玉峰, 胡琼. 甘蓝型油菜DH群体抗裂角性遗传分析. 中国油料作物学报, 2014, 36: 437–449
Wang H, Sang S F, Mei D S, Li Y C, Liu J, Fu L, Wang J, Chen Y F, Hu Q. Inheritance analysis of pod shatter resistance using a DH population in Brassica napus L. Chin J Oil Crop Sci, 2014, 36: 437–449 (in Chinese with English abstract)
[22] 汪文祥, 胡琼, 梅德圣, 李云昌, 王会, 王军, 付丽, 刘佳. 基于图像处理的油菜分枝及角果着生角度测量方法. 中国油料作物学报, 2015, 37: 566–570
Wang W X, Hu Q, Mei D S, Li Y C, Wang H, Wang J, Fu L, Liu J. Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chin J Oil Crop Sci, 2015, 37: 566–570 (in Chinese with English abstract)
[23] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013, 36(6): 1–6
Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ, 2013, 36(6): 1–6 (in Chinese with English abstract)
[24]Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49
[25]马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31: 180–184
Ma N, Zhang C L, Li J, Li G M. Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2009, 31: 180–184 (in Chinese with English abstract)
[26]朱珊, 李银水, 余常兵, 谢立华, 胡小加, 张树杰, 廖星, 廖祥生, 车志. 密度和氮肥用量对油菜产量及氮肥利用率的影响. 中国油料作物学报, 2013, 35: 179–184
Zhu S, Li Y S, Yu C B, Xie L H, Hu X J, Zhang S J, Liao X, Liao X S, Che Z. Effects of planting density and nitrogen application rate on rapeseed yield and nitrogen efficiency. Chin J Oil Crop Sci, 2013, 35: 178–184 (in Chinese with English abstract)
[27]马霓, 李云昌, 胡琼, 李俊, 李光明, 张春雷. 我国南方冬油菜机械化生产农艺研究进展. 中国油料作物学报, 2010, 32: 451–456
Ma N, Li Y C, Hu Q, Li J, Li G M, Zhang C L. Research of agronomic techniques form mechanical production of winter rape (Brassica napus L.). Chin J Oil Crop Sci, 2010, 32: 451–456 (in Chinese with English abstract)
[28] 王玫, 陈洪伟, 王红利, 刘克锋. 独脚金内酯调控植物分枝的研究进展. 园艺学报, 2014, 41: 1924–1934
Wang M, Chen H W, Wang H L, Liu K F. Research progress in regulatory role of strigolactones in shoot branching. Acta Hort Sin, 2014, 41: 1924-1934 (in Chinese with English abstract)
[29] Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. Front Plant Sci, 2015, 5: 741
[30] 付三雄, 戚存扣. 甘蓝型油菜含油量的主基因+多基因遗传分析. 江苏农业学报, 2009, 25: 731–736
Fu S X, Qi C K. Major gene plus polygene inheritance of oil content in Brassica napus L. Jiangsu J Agirc Sci, 2009, 25: 731–736 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[11] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[12] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!