欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1122-1133.doi: 10.3724/SP.J.1006.2016.01122

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米抗禾谷镰刀菌的转录组分析

刘永杰,马传禹,马雪娜,徐明良*   

  1. 中国农业大学国家玉米改良中心,北京100193
  • 收稿日期:2016-01-11 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-05-30
  • 通讯作者: 徐明良, E-mail: mxu@cau.edu.cn, Tel: 010-62733166
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2003-Q04)资助。

Transcriptional Analysis of Maize Resistance against Fusarium graminearum

LIU Yong-Jie,MA Chuan-Yu,MA Xue-Na,XU Ming-Liang*   

  1. National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
  • Received:2016-01-11 Revised:2016-05-09 Published:2016-08-12 Published online:2016-05-30
  • Contact: 徐明良, E-mail: mxu@cau.edu.cn, Tel: 010-62733166
  • Supported by:

    This study was supported by the Program of Introducing International Super Agricultural Science and Technology(948 Program) (2011-G15).

摘要:

赤霉菌茎腐病是由禾谷镰刀菌(Fusarium graminearum,有性态,Gibberella zeae)引起的一类土传性病害,严重危害玉米的产量和品质。本研究依据玉米第10和第1染色体上的2个抗茎腐病QTL,qRfg1qRfg2培育近等基因系NIL-R (2个QTL位点均为抗病等位基因)和NIL-S (2个QTL均为感病等位基因)。在成株期和幼苗期接种禾谷镰刀菌,两近等基因系的抗性差异均显著。用2个近等基因系的幼根接种禾谷镰刀菌,进行转录组分析研究。结果表明,与NIL-S相比,NIL-R在接种禾谷镰刀菌后,乙烯(ethylene,ET)合成、信号途径基因,病程相关蛋白、脱氧雪腐镰刀菌烯醇毒素(deoxynivalenol,DON)解毒基因等呈现特异上调表达。与NIL-S相比,有1170个基因在NIL-R对照组中表达量较高,其中水杨酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)和乙烯合成和信号介导途径以及苯丙烷合成途径中的基因显著富集;接种禾谷镰刀菌6 h或18 h后,病程相关蛋白、激素JA和ET合成基因、DON解毒基因在NIL-R中表达量较高。

关键词: 玉米, 茎腐病, 转录组, 抗性, JA/ET, 苯丙烷

Abstract:

Gibberella stalk rot, caused by Fusarium graminearum (teleomorph, Gibberella zeae), is one of the most devastating soil-borne diseases in maize. It seriously decreases maize yield and quality. Molecular mapping  led to the identification of twoQTLs, qRfg1 and qRfg2, on chromosomes 10 and 1 respectively, conferring resistance to Gibberella stalk rot. In order to characterize the defense mechanism of maize against F. graminearum, NIL-R with resistant alleles at both QTLs and NIL-S with the susceptible alleles at both QTLs were generated and used in transcriptome analysis. After inoculation of young seedling roots of both NILs with the F. graminearum spores, the inoculated roots were sampled at 0, 6, and 18 hours after inoculation (hai) for transcriptome analysis using RNAseq. The basal difference was achieved by the comparison between control samples. In total, 2958 genes were differentially expressed between control samples of NIL-R and NIL-S, among which 1170 genes were more abundant in NIL-R. GO analysis revealed that genes involved in biological processes related to JA/ET and SA biosynthesis, JA/ET mediated signaling pathway and SA mediated signaling pathway were significantly enriched. Phenylpropanoid biosynthesis process was enriched in the genes more abundant in NIL-R and genes encoding enzymes involved in phenylpropanoid biosynthesis like PAL, 4CL2, CAD, and HCTwere more abundant in NIL-R. There were 431 genes differentially expressed between NIL-R and NIL-S at 6 hai, among which 83 genes were more abundant in NIL-R. Genes encoding pathogenesis-related (PR) proteins like lipid-transfer protein and germin-like proteinwere more abundant in NIL-R. Among the 1292 genes differentially expressed between NIL-R and NIL-S. At 18 hai, 291 genes were more abundant in NIL-R. Genes involved in ET biosynthesis like ACO and JA biosynthesis like LOX were more abundant in NIL-R. Genes involved in DON detoxification like PDR1 and MDR2 were more abundant in NIL-R. After inoculation with F. graminearum, 428 genes were exclusively up-regulated in NIL-R at 6 hai compared with control. Genes involved in ET biosynthesis and ET-mediated signaling pathway like ACO, ERF, EBF1, and EIL1 and pathogenesis-related genes like PR1, OSM34, and germin-like protein were exclusively up-regulated in NIL-R. At 18 hai, 359 genes were exclusively up-regulated in NIL-R compared with control. Pathogenesis-related genes like PR1, PR4, and genes encoding the transporters of DON out of cytoplasm likeABC transport family protein, heavy metal transport protein and MATE efflux family protein were exclusively up-regulated in NIL-R. All these results indicate that NIL-R can increase the resistance of maize to F. graminearum by the constitutive resistance characterized by the higher expression of genes related to defense responses. Genes involved in defense responses exclusively up-regulated in NIL-R and higher expression level of disease resistance genes in NIL-R at 6 and 18 hai may restrict the pathogen invasion after infection. The phenylpropanoid biosynthesis pathway and DON-detoxification proteins identified in this study are important for the resistance against F. graminearum infection.



 本研究由引进国际先进农业科学技术计划(948计划)项目(2003-Q04)资助。
This study was supported by the Program of Introducing International Super Agricultural Science and Technology(948 Program) (2011-G15).
* 通讯作者(Corresponding author): 徐明良, E-mail: mxu@cau.edu.cn, Tel: 010-62733166
第一作者联系方式: E-mail: liu_yongj@126.com
Received(收稿日期): 2016-01-11; Accepted(接受日期): 2016-05-09; Published online(网络出版日期):2016-05-30.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160530.0905.008.html

Key words: Maize, Stalk rot, Transcriptome, Resistance, JA/ET, Phenylpropanoid

[1] Yang Q, Yin G M, Guo Y L, Zhang D F, Chen S J, Xu M L. A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet, 2010, 121: 673–687
[2] Ali M L, Taylor J H, Jie L, Sun G L, William M, Kasha K J, Reid L M, Pauls K P. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome, 2005, 48: 521–533
[3] Schweiger W, Steiner B, Ametz C, Siegwart G, Wiesenberger G, Berthiller F, Lemmens M, Jia H Y, Adam G, Muehlbauer G J. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs. Ifa-5A, identifies novel candidate genes. Mol Plant Pathol, 2013, 14: 772–785
[4] Boddu J, Cho S, Kruger W M, Muehlbauer G J. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant-Microbe Interact, 2006, 19: 407–417
[5] Goswami R S, Kistler H C. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology, 2005, 95: 1397–1404
[6] Urban M, Daniels S, Mott E, Hammond-Kosack K. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J, 2002, 32: 961–973
[7] McMullen M, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis, 1997, 81: 1340–1348
[8] Rocha O, Ansari K, Doohan F M. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam, 2005, 22: 369–378
[9] Pestka J J, Zhou H R, Moon Y, Chung Y J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett, 2004, 153: 61–73
[10] Pestka J J. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins, 2010, 2: 1300–1317
[11] Miller J D, Ewen M A. Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars Frontana and Casavant. Nat Toxins, 1997, 5: 234–237
[12] Desjardins A E, Proctor R H, Bai G H, McCormick S P, Shaner G, Buechley G, Hohn T M. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant-Microbe Interact, 1996, 9: 775–781
[13] Langevin F, Eudes F, Comeau A. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol, 2004, 110: 735–746
[14] Harris L, Desjardins A E, Plattner R, Nicholson P, Butler G, Young J, Weston G, Proctor R, Hohn T. Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis, 1999, 83: 954–960
[15] Desmond O J, Manners J M, Stephens A E, Maclean D J, Schenk P M, Gardiner D M, Munn A M, Kazan K. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol, 2008, 9: 435–445
[16] Jia H Y, Cho S, Muehlbauer G J. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and-susceptible alleles. Mol Plant-Microbe Interact, 2009, 22: 1366–1378
[17] Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem, 2003, 278: 47905–47914
[18] Muhitch M J, McCormick S P, Alexander N J, Hohn T M. Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Sci, 2000, 157: 201–207
[19] Boddu J, Cho S, Muehlbauer G J. Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant-Microbe Interact, 2007, 20: 1364–1375
[20] Gardiner S A, Boddu J, Berthiller F, Hametner C, Stupar R M, Adam G, Muehlbauer G J. Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. Mol Plant-Microbe Interact, 2010, 23: 962–976
[21] Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer G J, Adam G. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant-Microbe Interact, 2010, 23: 977–986
[22] Kruger W M, Pritsch C, Chao S, Muehlbauer G J. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant-Microbe Interact, 2002, 15: 445–455
[23] Zhu Q H, Stephen S, Kazan K, Jin G, Fan L, Taylor J, Dennis E S, Helliwell C A, Wang M B. Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene, 2013, 512: 259–266
[24] Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014, 15: 710
[25] Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P. Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci, 2000, 40: 1012–1018
[26] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012, 7: 562–578
[27] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106
[28] Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674–3676
[29] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T. Gene Ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25–29
[30] Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci, 2013, 4: 7
[31] Xiao J, Jin X H, Jia X P, Wang H Y, Cao A Z, Zhao W P, Pei H Y, Xue Z K, He L Q, Chen Q G, Wang X. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 2013, 14: 197
[32] Li G L, Yen Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci, 2008, 48: 1888–1896
[33] Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X, Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PloS One, 2011, 6: e19008
[34] Steiner B, Kurz H, Lemmens M, Buerstmayr H. Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet, 2009, 118: 753–764
[35] Ye J R, Guo Y L, Zhang D F, Zhang N, Wang C, Xu M L. Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to Gibberella stalk rot in maize. Mol Plant-Microbe Interact, 2013, 26: 1417–1428
[36] Hamzehzarghani H, Kushalappa A C, Dion Y, Rioux S, Comeau A, Yaylayan V, Marshall W D, Mather D E. Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against Fusarium head blight. Physiol Mol Plant Pathol, 2005, 66: 119–133
[37] Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones J D, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448: 497–500

 
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!