欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1253-1258.doi: 10.3724/SP.J.1006.2016.01253

• 研究简报 • 上一篇    

小麦wzy2-1基因的克隆及功能分析

强治全1,梁雅珺1,于正阳1,杜娅1,张帅1,朱维宁2,张林生1,*   

  1. 1西北农林科技大学生命科学学院/旱区作物逆境生物学国家重点实验室,陕西杨凌712100; 2西北大学生命科学学院,陕西西安710069
  • 收稿日期:2016-01-23 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-06-02
  • 通讯作者: 张林生, E-mail: linszhang@nwsuaf.edu.cn, Tel: 029-87092379
  • 基金资助:

    本研究由高等学校博士学科点专项科研基金(20120204110033)和旱区作物逆境生物学国家重点实验室基金(CSBAA2015007)资助。

Cloning and Functional Analysis of wzy2-1Gene in Wheat

QIANG Zhi-Quan1,LIANGYa-Jun1,YU Zheng-Yang1,DUYa1,ZHANGShuai1,ZHUWei-Ning2,ZHANG Lin-Sheng1,*   

  1. 1College of Life Science/ State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University,Yangling712100,China; 2College of Life Science, Northwest University, Xi’an 710069, China
  • Received:2016-01-23 Revised:2016-05-09 Published:2016-08-12 Published online:2016-06-02
  • Contact: 张林生, E-mail: linszhang@nwsuaf.edu.cn, Tel: 029-87092379
  • Supported by:

    This study was supported by the Projects for Doctoral Research Funding in Higher Education InstitutionsFunction and Structure of Dehydrin Protein in Different Water Content (20120204110033) and the Foundation of State Key Laboratory of Crop Stress Biology for Arid Areas of Northwest A&F University (CSBAA2015007).

摘要:

脱水素是一类植物胚胎发育后期丰富蛋白(late embryogenesis abundant protein, LEA蛋白),属于LEA D-11家族,植物受非生物胁迫会大量表达。利用同源克隆技术,从郑引1号小麦中克隆了1个Kn型脱水素基因,命名为wzy2-1。该基因全长1740bp,编码579个氨基酸,含有9个保守的K片段,与大麦的Dhn5基因具有较高同源性。生物信息学预测该蛋白属于高度亲水性的无序蛋白。通过该蛋白对大肠杆菌的保护作用研究表明,WZY2-1蛋白能够提高大肠杆菌对低温、高温、高盐以及高渗胁迫的耐受性。荧光实时定量PCR分析表明,wzy2-1基因受低温、盐渍、干旱诱导表达,但不受外源ABA诱导,说明wzy2-1基因属于非ABA依赖型脱水素基因。

关键词: 小麦, 脱水素, 荧光实时定量PCR, 原核表达

Abstract:

Dehydrins (DHNs) are identified as the group II of LEA proteins and involved in plant abiotic stress tolerance.In this study,we isolated a novel Kn-type dehydrin genefrom wheat cultivarZhengyin 1, which was designated wzy2-1.The full length of wzy2-1 is 1740bp,encoding 579 amino acids andcontaining nine conserved K-fragments.Sequence alignment indicated that wzy2-1hadhighhomologytoDhn5gene in Hordeumvulgare.The WZY2-1 protein waspredicted to be a highly-hydrophilic and disordered protein. The WZY2-1 protein was successfully expressed in E. coli strain BL21 (DE3). We found that WZY2-1 protein improved the tolerance to low or high temperature, salt and osmotic stressesin E. coli. The qRT-PCR assay indicated that the expression of wzy2-1gene was inducedby low temperature, PEG, and salt stresses rather than ABA. Thus, we conclude that wzy2-1 is an ABA-independent gene.

Key words: Wheat, Dehydrins, Real-time PCR, Procaryoticexpression

[1] 闵东红, 赵月, 陈阳, 徐兆师, 霍冬英, 胡笛, 陈明, 李连城, 马有志. 小麦胁迫相关基因TaLEA3的克隆及分子特性分析. 作物学报, 2012,10:1847–1855
Min D H, Zhao Y, Chen Y, Xu Z S, Huo D Y, Hu D, Chen M, Li L C, Ma Y Z. Isolation and molecular characterization of stress-related TaLEA3 gene in wheat. ActaAgron Sin, 2012, 10: 1847?1855 (in Chinese with English abstract)
[2] Furuki T, Sakurai M. Group 3 LEA protein model peptides protect liposomes during desiccation. BiochimBiophysActa, 2014, 11: 2757?2766
[3] 王康, 朱慧森, 董宽虎. 植物LEA蛋白及其基因家族成员PM16研究进展. 草业科学, 2008, (2): 97?102
Wang K, Zhu H S, Dong K H. Research progress on molecular biology of LEA protein and members of LEA gene family-PM16. PratacultSci, 2008, (2): 97?102(in Chinese with English abstract)
[4] Lii D L. Structural motifs in lea proteins. Curr Topics Plant Physiol, 1993, 10: 91?103
[5] Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci, 2015, 231: 198?211
[6] Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant, 1996, 97: 795?803
[7] Zolotarov Y, Stromvik M. De novo regulatory motif discovery identifies significant motifs in promoters of five classes of plant dehydrin genes. PloS One, 2015, 10: e0129016
[8] Godoy J A, Lunar R, Torres-Schumann S, Moreno J, Rodrigo R M, Pintor-Toro J A. Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant MolBiol, 1994, 26: 1921?1934
[9] Jensen A B, Goday A, Figueras M, Jessop A C, Pages M. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J, 1998, 13: 691?697
[10] Carpenter J F, Crowe J H. The mechanism of cryoprotection of proteins by solutes. Cryobiology, 1988, 25: 244?255
[11] Drira M, Saibi W, Amara I, Masmoudi K, Hanin M, Brini F. Wheat dehydrin K-segments ensure bacterial stress tolerance, antiaggregation and antimicrobial effects. ApplBiochemBiotechnol, 2015, 175: 3310?3321
[12] M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M. The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and beta-glucosidase activities in vitro. MolBiotechnol, 2013, 54: 643?650
[13] Yang W, Zhang L, Lv H, Li H, Zhang Y, Xu Y, Yu J. The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. Front Plant Sci, 2015, 6: 406
[14] Tsvetanov S, Ohno R, Tsuda K, Takumi S, Mori N, Atanassov A, Nakamura C. A cold-responsive wheat (TriticumaestivumL.) gene wcor14 identified in a winter-hardy cultivar “Mironovska 808”. Genes Genet Syst, 2000, 75: 49?57
[15] Baker S S, Wilhelm K S, Thomashow M F. The 5′-region of Arabidopsis thalianacor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant MolBiol,1994, 24: 701?713
[16] Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant, 1997, 100: 291–296
[17] Kosova K, Vitamvas P, Prasil I T. Wheat and barley dehydrins under cold, drought, and salinity: what can LEA-II proteins tell us about plant stress response? Front Plant Sci, 2014, 5: 343
[18] Chen R G, Jing H, Guo W L, Wang S B, Ma F, Pan B G, Gong Z H. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Rep, 2015, 34: 2189?2200
[19]刘亚玲, 王俊杰, 云锦凤, 赵彦, 侯永霞. 黄花苜蓿LEA3基因片段克隆与生物信息学分析. 生物技术通报, 2011, (7): 82?87
Liu Y L , Wang J J, Yun J F, Zhao Y, Hou Y X. Cloning and bioinformatics analysis of Lea3gene from wild Medicago falcate. Biotechnol Bull, 2011, (7): 82?87(in Chinese with English abstract)
[20] 杜俊波, 席德慧, 王尚英, 冯鸿, 孙歆, 袁澍, 王建辉, 刘自礼, 薛立微, 林宏辉. 青稞脱水素基因dhn4的克隆与原核表达. 四川大学学报(自然科学版), 2008,45: 441?445
Du J B, Kang D H, Wang S Y, Feng H, Sun Y, Yuan S, Wang J H, Liu Z L, Xue L W, Lin H H. Cloning and procaryotic expression of the dehydrin dhn4 gene from Tibetan hulless barley. J Sichuan Univ (Nat SciEdn), 2008, 45: 441?445 (in Chinese with English abstract)
[21] Kalemba E M, Litkowiec M. Functional characterization of a dehydrin protein from Fagus sylvatica seeds using experimental and in silico approaches. Plant Physiol&Biochem, 2015, 97: 246?254
[22] Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhu D, Zhao Q and Yu J. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol, 2014, 14: 290?306
[23] Choi D W, Zhu B, Close T J. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. TheorAppl Genet, 1999, 98: 1234?1247
[24] Garay-Arroyo A, Colmenoro-Florest J M, Garciarrubio A, Covarrubias A A. Highly hydrophilic proteins in prokaryotes and eucaryotes are common during conditions of water deficit. BiolChem, 2000, 275: 5668?5674
[25] Nylander M, Svensson J, Palva E T, Welin B V. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant MolBiol, 2001, 45: 263?279
[26] Davidson W S, Jonas A, Clayton D F, George, J M. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. BiolChem, 1998, 273: 9443?9449
[27] Popova A V, Rausch S, Hundertmark M, Gibon Y, Hincha D K. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. BiochimBiophysActa, 2015, 1854: 1517?1525
[28] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. CurrOpin Plant Biol, 2000, 3: 217?223
[29] Giordani T, Natali L, D’Ercole A, Pugliesi C, Fambrini M, Vernieri P, Vitagliano C, Cavallini A. Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuusL.). Plant MolBiol, 1999, 39: 739?748
[30] Zhu W N, Zhang D P, Lu X X,Zhang L S, Yu Z Y,Lv H, Zhang H M. Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant MolBiol Rep, 2014, 32:664–678

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!