欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1247-1252.doi: 10.3724/SP.J.1006.2016.01247

• 研究简报 • 上一篇    下一篇

利用HMW-GS全缺失突变体快速构建Glu-1位点近等渗入系

张星星1,2,**,王召军2,3,**,杨玉双2,4,王道文2,郑文明1,*,董振营2,*   

  1. 1河南农业大学生命科学学院 / 小麦玉米作物学国家重点实验室/河南粮食作物协同创新中心, 河南郑州450002; 2中国科学院遗传与发育生物学研究所 / 植物细胞与染色体工程国家重点实验室, 北京100101; 3中国科学院大学, 北京100049; 4中国热带农业科学院橡胶研究所, 海南儋州571731
  • 收稿日期:2016-02-22 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-06-02
  • 通讯作者: 郑文明, E-mail: wmzheng@henau.edu.cn; 董振营, E-mail: zhydong@genetics.ac.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31300280)和国家重点基础研究发展计划(973计划)项目(2013CB127702)资助。

Rapid Development of Glu-1 Locus Near-isogenic Introgression Lines Using HMW-GS Deletion Mutant

ZHANG Xing-Xing1,2,**,WANG Zhao-Jun2,3,**,YANG Yu-Shuang2,4,WANG Dao-Wen2,ZHENG Wen-Ming1,*,DONG Zhen-Ying2,*   

  1. 1State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; 2State Key Laboratory of PlantCell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3University of Chinese Academy of Sciences, Beijing 100049,China; 4Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571731, China
  • Received:2016-02-22 Revised:2016-05-09 Published:2016-08-12 Published online:2016-06-02
  • Contact: 郑文明, E-mail: wmzheng@henau.edu.cn; 董振营, E-mail: zhydong@genetics.ac.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31300280) and the National Key Basic Research Program of China (2013CB127702).

摘要:

小麦高分子量麦谷蛋白亚基(highmolecular weight glutenin subunit, HMW-GS)由Glu-A1Glu-B1Glu-D1位点中含有的复等位基因编码,评价和优化Glu-1位点组合是认识与改良HMW-GS表达与功能的重要途径。本研究创制了以小偃81为背景的HMW-GS基因完全缺失突变体DLGlu1。将DLGlu1与加拿大优质强筋小麦品种Glenlea杂交,结合后代幼胚培养与分子标记辅助选择技术,在BC3F3种子中快速鉴定出来自Glenlea的Glu-A1aGlu-B1alGlu-D1d位点不同组合的7种渗入系材料,可进一步发展成一套完整的Glu-1位点有差异的近等渗入系。本研究表明,DLGlu1可用于Glu-1位点近等渗入系的快速创制,对Glu-1位点功能研究和改良具有重要价值。

关键词: 小麦, 高分子量麦谷蛋白亚基, 缺失突变体, 渗入系

Abstract:

Wheat (Triticumaestivum L., AABBDD) highmolecular weight glutenin subunits (HMW-GS) were encoded by the genes located inGlu-A1, Glu-B1and Glu-D1 loci.Evaluation and optimization of the combination of HMW-GS are very importantto understand Glu-1functions. In this study, we constructed aHMW-GS deletion mutant, DLGlu1 withXiaoyan 81 background, and crossed it with Glenlea, a Canada elite wheat variety with superior end-use quality. Combining the technologies of wheat embryo culture and molecular marker-assisted selection (MAS), we obtained seven introgression lines containing GlenleaGlu-A1a, Glu-B1al, and Glu-D1d loci, which can be developed as a complete set of near-isogenic introgression lines possessingGlenleadifferentHMW-GS genes. Our study indicated that the Glu-1 deletion mutant DLGlu1is of great value in the fast development of Glu-1 near-isogenic introgression lines and the studyand utility of wheat Glu-1.

Key words: Wheat, HMW-GS, Deletion mutant, Introgression lines

[1] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000, 408: 796–815
[2] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005,436:793–800
[3] Brenchley R, Spannagl M, Pfeifer M, Barker GA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Hou NX, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dovrak J, McCombie WR, Hall A, Mayer KFX, Edwards K, Bevan MW, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing.Nature,2012, 491:705–710
[4] International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticumaestivum) genome. Science,2014, 345: 1251788
[5] Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, IWGSC, Yang H, Liu X, He Z, Mao L, Wang J.Aegilopstauschiidraft genome sequence reveals a gene repertoire for wheat adaptation.Nature, 2013, 496:91–95
[6]Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, L Dong, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J.Draft genome of the wheat A-genome progenitor Triticumurartu. Nature, 2013, 496:87–90
[7] Li D, Dreher K, Knee E,Brkljacic J, Grotewold E, Berardini T Z, Lamesch P, Garcia-Hernandez M, Reiser L, Huala E.Arabidopsis Database and Stock Resources. Arabidopsis Protocols. Springer,2014.pp 65–96
[8] Hirochika H.Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breed Sci, 2010, 60:486–492
[9] Wang TL, Uauy C, Robson F, Till B.TILLING in extremis. Plant Biotechnol J, 2012, 10: 761–772
[10] Fitzgerald TL, Powell JJ, Stiller J, Weese TL, Abe T, Zhao G,Jia J, McIntyreC L, Li Z, Manners J M, Kazan K. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticumaestivum L.). PLoS One,2015, 10: e0117369
[11] Yang Y, Li S, Zhang K, Dong Z, Li Y, An X, Chen J, Chen Q, Jiao Z, Liu X, Qin H, Wang D. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. TheorAppl Genet, 2014, 127:359–372
[12] Shewry PR, Halford NG.Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot, 2002, 53:947–958
[13]Shewry P R, Halford N G, Tatham A S, Popineau Y, Lafiandra D, Belton P S. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res, 2003, 45:219–302
[14] Lafiandra D, D’Ovidio R, Porceddu E, Margiotta B, Colaprico G.New data supporting high Mrglutenin subunit 5 as the determinant of quality differences among the pairs 5+10 vs 2+12. J Cereal Sci, 1993, 18:197–205
[15] Marchylo B A, Lukow O M, Kruger J E. Quantitative variation in high-molecular-weight glutenin subunit 7 in some Canadian wheats. J Cereal Sci, 1992, 5:29–37
[16] Sears E R. Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis K R eds. Chromosome Manipulation and Plant Genetics. Oliver & Boyd, Edinburgh, 1966. pp 29–45
[17] 孙果忠, 马民强, 柴建芳, 赵和, 谢晓亮, 王海波. 小麦幼胚培养与幼粒破眠的比较. 河北农业科学, 2000, 4(1): 58–61
Sun G Z, Ma M Q, Cai J F, Zhao H, Xie X L, Wang H B. Comparison on wheat embryo culture and dormancy-breaking. J Hebei AgrSci, 2000, 4(1): 58–61 (in Chinese with English abstract)
[18] Butow B J, Gale K R, Ikea J, Juhász A, Bedö Z, Tamás L, Gianibelli M C. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. TheorAppl Genet, 2004, 109: 1525–1535
[19] Dong Z, Yang Y, Li Y, Zhang K , Lou H, An X, Dong L, Gu Y Q, Anderson O D, Liu X, Qin H, Wang D. Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat. PLoS One, 2013, 8: e74859
[20] Saghai-Maroof M A, Soliman KM, Jorgensen RA, Allard R W.Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl AcadSci USA,1984, 81:8014–8018
[21] Wan Y, Liu KF, Wang D, ShewryP R.High molecular weight subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat.TheorAppl Genet, 2000, 101: 879–884
[22] Zhang Y, Tang J W, Yan J, Zhang Y L, Zhang Y, Xia X C, He Z H.The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J Cereal Sci,2009, 50:219–226
[23] Jin H, He Z H, Li G Y, Mu P Y, Fan Z R, Xia X C, Zhang Y.Effects of high molecular weight glutenin subunits on wheat quality by Aroona and its near-isogenic lines. SciAgric Sin,2013, 46:1095–1103
[24] Vasil IK, Bean S, Zhao JM, McCluskey P, Lookhart G, Zhao H P, Altpeter F, Vasil V.Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1.J Plant Physiol. 2001, 158: 521–528
[25] Ma M, Yan Y, Huang L, Chen M, Zhao H. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol,2012, 12:141
[26] PaynePI, Nightingale MA, KrattigerAF, Holt L M.The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987, 40: 51–65
[27] Branlard G, Dardevet M, Saccomano R,Lagoutte F, Gourdon J.Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119:59–67
[28] Li Y, An X, Yang R, Guo X, Yue G, Fan R, Li B, Li Z, Zhang K, Dong Z, Zhang L, Wang J, Jia X, Ling H-Q, Zhang A, Zhang X, Wang D. Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Mol Plant, 2015, 8: 332–334
[29] 李保云, 刘桂芳, 王岳光, 孙辉, 刘广田. 小麦高分子量谷蛋白亚基的遗传规律研究.中国农业大学学报, 2000, 5(1): 58–62
Li B Y, Liu G F, Wang Y G, Sun H, Liu G T. Inheritance of high molecular weight glutenin subunits (HMW-GS) in wheat. J China AgricUniv, 2000, 5(1): 58–62 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!