欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 9-18.doi: 10.3724/SP.J.1006.2017.00009

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦茎秆实心度对茎秆强度的影响及相关性状QTL分析

潘婷1,**,胡文静2,**,李东升2,程晓明2,吴荣林2,程顺和1,2,*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095;2江苏里下河地区农业科学研究所 / 国家小麦改良中心扬州分中心,江苏扬州225007
  • 收稿日期:2016-03-10 修回日期:2016-09-18 出版日期:2017-01-12 网络出版日期:2016-10-09
  • 通讯作者: 程顺和, E-mail:13905273926@126.com**同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-03-03B, CARS-3-2-11)和江苏省农业科技自主创新资金项目[CX(13)2022]资助。

Influence of Stem Solidness on Stem Strength and Stem Solidness Associated QTLs in Bread Wheat

PAN Ting1,**,HU Wen-Jing2,**,LI Dong-Sheng2,CHENG Xiao-Ming2,WU Rong-Lin2,CHENG Shun-He1,2,*   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agriculture Sciences of the Lixiahe District / Branch of National Wheat Improvement Center, Yangzhou 225007, China
  • Received:2016-03-10 Revised:2016-09-18 Published:2017-01-12 Published online:2016-10-09
  • Contact: 程顺和, E-mail:13905273926@126.com**同等贡献(Contributed equally to this work)
  • Supported by:

    This study was supported by the China Agriculture Research System(CARS-03-03B, CARS-3-2-11) and theIndependent Innovation Fundfor Agricultural Science and Technology in Jiangsu Province [CX(13)2022].

摘要:

在QTL水平上研究茎秆实心度与强度的遗传关系及实心度对茎秆强度的影响,为小麦抗倒伏育种提供依据。利用普通小麦宁麦18 与实秆小麦种质“武云实秆”的F2群体和F2:3家系,对小麦茎秆强度、实心度及影响实心度的相关性状包括厚径比、壁厚、茎粗和髓腔直径进行了相关分析,并对茎秆强度相关性状QTL进行分子标记定位及遗传效应分析。结果表明小麦茎秆强度与厚径比、壁厚均呈极显著正相关,与髓腔直径呈极显著负相关。基于复合区间作图法进行QTL定位,检测到与茎秆强度、厚径比、壁厚、茎粗和髓腔直径相关QTL共23个,分布在1B、3B、4A、4B、5A上,表型贡献率3.5%~44.0%。在染色体3B、4A和5A上的标记区间gwm547–gwm247wmc718–wmc468gwm156–gwm443均检测到贡献率很高的茎秆实心度相关QTL,说明在这3条染色体上可能存在控制茎秆强度的主效QTL。用普通小麦宁麦13(N13)×武云实秆的24个F7家系检验分子标记gwm247的可靠性表明利用标记gwm247选育茎秆实心度优于宁麦13的概率较大。研究结果为进一步精细定位相关主效QTL以及分子标记辅助改良小麦茎秆强度奠定了基础。

关键词: 小麦, 茎秆强度, 实心度, QTL定位

Abstract:

Improving stem strength is an important way to increase lodging resistance of wheat. Solid stem traits, including thickness-diameter ratio of culm, stem diameter, culm wall thickness and pith diameter, are the main targets for improvement of stem strength in wheat. In the present study, an F2 population and F2:3 families derived from the cross N18×WYSG wereused to study the influence of stem solidness on stem strength and to identify QTLs for solidnessrelated traits. The thickness-diameter ratio of culm, stem diameter, culm wall thickness and pith diameter were significantly correlated with stem strength. By using composite interval mapping (CIM), a total of 23 QTLs for the five traitswere detected on chromosomes 1B, 3B, 4A, 4B and 5A. Phenotypic variations explained by individual QTL ranged from 3.5% to 44.0%. Pleiotropic QTLs were found on chromosomes 3B (gwm547gwm247),4A (wmc718wmc468) and 5A (gwm156gwm443), all contributing very high phenotypic variations. The reliability of the marker gwm247was confirmed using 24 F7 lines derived from the N13 (hollow stem) × WYSG (solid stem) cross. The markers linked to major QTLs could be valuable in wheat breeding for lodging resistance with marker assisted selection technology.

Key words: Wheat, Stem strength, Stem solidness, Quantitative trait loci

[1] Peake A S, Huth N I, Carberry P S, Raine S R, Smith R J. Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia. Field Crops Res, 2014, 158: 1–14
[2] Berry P M, Spink J. Predicting yield losses caused by lodging in wheat. Field Crops Res, 2012, 137: 19–26
[3] 许琦, 杨娜, 柴永峰, 杨淑巧, 赵智勇, 裴蕾, 郭文治, 刘跃鹏. 中国小麦主要矮秆基因的分布及其对株高的影响. 西北农业学报 2014, 23(5): 59–64
Xu Q, Yang N, Chai Y F, Yang S Q, Zhao Z Y, Pei L, Guo W Z, Liu Y P. Distribution and impact on plant height of major wheat darfing genes in China. Acta Agric Boreali-Occids Sin, 2014, 23(5): 59–64 (in Chinese with English abstract)
[4] 崔淑佳, 潘晓萍, 高居荣, 王洪刚, 李兴锋. 不同小麦品种(系)株高及节间长度研究. 山东农业科学, 2014, 46(10): 19–22
Cui S J, Pan X P, Gao J R, Wang H G, Li X F. Analysis of plant height and internode length of different wheat varieties (lines). Shandong Agric Sci, 2014, 46(10): 19–22 (in Chinese with English abstract)
[5] 肖世和, 张秀英, 闫长生, 张文祥, 海林, 郭会君. 小麦茎秆强度的鉴定方法研究. 中国农业科学, 2002, 35: 7–11
Xiao S H, Zhang X Y, Yan C S, Zhang W X, Hai L, Guo H J. Determination of resistance to lodging by stem strength in wheat. Sci Agric Sin, 2002, 35: 7–11 (in Chinese with English abstract)
[6] Sirajul I M, Peng S B, Visperas R M, Nelzo E, Sultan U B M, Julfiquar A W. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res, 2007, 101: 240–248
[7] Zhu L, Shi G X, Li Z S, Kuang T Y, Li B, Wei Q K, Bai K Z, Hu Y X, Lin J X. Anatomical and chemical features of high-yield wheat cultivar with reference to its parents. Acta Bot Sin, 2004, 46: 565–572
[8] 韦爽, 万燕, 晏林, 向达兵, 赵钢, 黄凯丰, 谭茂玲, 宋月, 张莹. 不同苦荞品种茎秆强度和植株性状的差异及其相关性. 作物杂志, 2015, (2): 59–63
Wei S, Wan Y, Yan L, Xiang D B, Zhao G, Huang K F, Tan M L, Song Y, Zhang Y. Difference and correlation of different tartary buckwheat cultivars in stem strength and plant characters. Crops, 2015, (2): 59–63 (in Chinese with English abstract)
[9] Zhang J, Li G H, Song Y P, Liu Z H, Yang C D, Tang S, Zheng C Y, Wang S H, Ding Y F. Lodging resistance characteristics of high-yielding rice populations. Field Crops Res, 2014, 161: 64–74
[10] Bourmaud A, Gibaud M, Lefeuvre A, Morvan C, Baley C. Influence of the morphology characters of the stem on the lodging resistance of Marylin flax. Ind Crop Prod, 2015, 66: 27–37
[11] Zuber U, Winzeler H, Messmer M M, Keller M, Keller B. Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci, 2001, 182: 17–24
[12] 汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40: 1846–1856
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Lin T T, He P L, Li Y, Yi Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agron Sin, 2014, 40: 1846–1856 (in Chinese with English abstract)
[13] 桑云, 赵亮, 张坤普, 田纪春, 叶宝兴. 小麦DH群体穗下节间直径、茎壁厚及茎壁面积的QTL定位. 作物学报, 2010, 36: 61–67
Sang Y, Zhao L, Zhang K P, Tian J C, Ye B X. Mapping QTLs for uppermost internode diameter and thickness and area of culm wall with doubled-haploid population in wheat. Acta Agron Sin, 2010, 36: 61–67 (in Chinese with English abstract)
[14] Hai L, Guo H J, Xiao S H, Jiang G L, Zhang X Y, Yan C S, Xin Z Y, Jia J Z. Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica, 2005, 141: 1–9
[15] Inoue M, Gao Z S,Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet, 2004, 109: 1576–1585
[16] Milach S C K, Rines H W, Phillips R L. Plant height components and gibberellic acid response of oat dwarf lines. Crop Sci, 2002, 42: 1147
[17] 董琦, 王爱萍, 梁素明. 小麦基部茎节形态结构特征与抗倒性的研究. 山西农业大学学报, 2003, (3): 188–191
Dong Q, Wang A P, Liang S M. Study on the architectural characteristics of wheat stalks. J Shanxi Agric Univ, 2003, (3): 188–191 (in Chinese with English abstract)
[18] 陈华华, 李俊, 万洪深, 王玲玲, 彭正松, 杨武云. 实心小麦86-741茎秆的解剖分析及壁厚特性的SSR标记. 作物学报, 2008, 34: 1381–1385
Chen H H, Li J, Wan H S, Wang L L, Peng Z S, Yang W Y. Microsatellite markers for culm wall thickness and anatomical features of solid stem Wheat 86-741. Acta Agron Sin, 2008, 34: 1381–1385 (in Chinese with English abstract)
[19] Kong E Y, Liu D C, Guo X L, Yang W L, Sun J Z, Li X, Zhan K H, Cui D Q, Lin J X, Zhang A M. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J, 2013, 1: 43–49
[20] Platt A W, Farstad C W. The reaction of wheat varieties to wheat stem sawfly attack. Sci Agric, 1946, 26: 231–247
[21] Platt A W, Farstad C W, Callenbach J A. The reaction of rescue wheat to sawfly damage. Sci Agric, 1948, 28: 154–161
[22] McNeal F H, Watson C A, Berg M A, Wallace L E. Relationship of stem solidness to yield and lignin content in wheat selections. Agron J, 1965, 57: 20–21
[23] Wallace L E,McNeal F H. Stem sawflies of economic importance in grain crops in the United States. Tech Bull, 1966, 1350: 50
[24] Adrianna S, Karl D G,William B. Impact of solid and hollow varieties of winter and spring wheat on severity of wheat stem sawfly (Hymenoptera: Cephidae) infestations and yield and quality of grain. J Economic Entomol, 2015, 108: 2316–2323
[25] Mcneal F H,Berg M A. Stem solidness and its relationship to grain yield in 17 spring wheat crosses. Euphytica, 1979, 28: 89–91
[26] 郭会君. 小麦茎秆强度及其相关性状的QTL分析.中国农业科学院硕士学位论文, 北京, 2002
QTL Analysis for Stem Strength and Its Correlated Traits in Wheat. MS Thesis of The Chinese Academy of Agricultural Sciences. Beijing, China, 2002
[27] Verma V, Worland A J, Sayers E J, Fish L, Caligari P D S, Snape J W. Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed, 2005, 124: 234–241
[28] 廖晓虹, 蒲宗君, 杨武云. 小麦遗传材料86-741与黑麦的可杂交性研究. 云南农业大学报, 1999, 14(1): 37–39
Liao X H, Pu Z J, Yang W Y. Crossability of common wheat line 86-741 with Rye. J Yunnan Agric Univ, 1999, 14(1): 37–39 (in Chinese with English abstract)
[29] Wei H T, Li J, Yang W Y, Peng Z S,Yang L. The genetic comparison of “Chuanmai 42” and “Chuanmai 43” revealed by microsatellite marker. Southwest China J Agric Sci, 2006, 19: 177–181
[30] Wang J, Zhu J M, Lin Q Q, Li X J, Teng N J, Li Z S, Li B, Zhang A M, Lin J X. Effects of stem structure and cell wall components on bending strength in wheat. Chin Sci Bull, 2006, 51: 815–823
[31] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 999–1009
[32] 姚金保, 马鸿翔, 姚国才, 杨学明, 周淼平, 张平平, 张鹏. 小麦抗倒性研究进展. 植物遗传资源学报, 2013, 14: 208–213
Yao J B, Ma H X, Yao G C, Yang X M, Zhou M P, Zhan P P, Zhang P. Research progress on lodging resistance in wheat (Triticum aestivum L.). J Plant Genet Resour, 2002, 14: 208–213 (in Chinese with English abstract)
[33] 冯素伟, 李淦, 胡铁柱, 姜小苓, 李小军, 董娜, 茹振钢. 不同小麦品种茎秆抗倒的研究. 麦类作物学报, 2012, 32: 1055–1059
Feng S W, Li G, Hu T Z, Jiang X L, Li X J, Dong N, Ru Z G. Study on the stem lodging resistance of different wheat varieties. J Triticeae Crops, 2012, 32 : 1055–1059 (in Chinese with English abstract)
[34] 朱新开, 王祥菊, 郭凯泉, 郭文善, 封超年, 彭永欣. 小麦倒伏的茎秆特征及对产量与品质的影响. 麦类作物学报, 2006, 26: 87–92
Zhu X K, Wang X J, Guo K Q, Guo W S, Feng C N, Peng Y X. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality. J Triticeae Crops, 2006, 26: 87–92 (in Chinese with English abstract)
[35] Tripathi S C, Sayre K D, Kaul J N, Narang R S. Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res, 2003, 84: 271–290
[36] 李寒冰, 白克智, 匡廷云, 胡玉熹, 贾旭, 林金星. 粗杆高产小麦茎结构特性分析. 植物学报, 2000, 42: 1258–1262
Li H B, Bai, K Z, Kuang T Y, Hu Y X, Jia X, Lin J X. Structural characteristics of thicker-culms in the high-yield wheat cultivars. Acta Bot Sin, 2000, 42: 1258–1262 (in Chinese with English abstract)
[37] 郭维俊, 王芬娥, 黄高宝, 张锋伟, 魏时来. 小麦茎秆力学性能与化学组分试验. 农业机械学报, 2009, 40: 110–114
Guo W J, Wang F E, Huang G B, Zhang F W, Wei S L. Experiment on mechanical properties and chemical compositions of wheat stems. Trans CSAM, 2009, 40: 110–114 (in Chinese with English abstract)
[38] Larson, McDonald M D. Cytogenetics of solid stem in common wheat: II. Stem solidness of monosomic lines of the variety S-615. Can J Bot, 1959, 37: 365–378
[39] Larson. Cytogenetics of solid stem in common wheat: I. Monosomic F2 analysis of the variety S-615. Can J Bot, 1959, 37: 135–156
[40] Cook J P, Wichman D M, Martin J M, Bruckner P L, Talbert L E. Identification of microsatellite markers associatedwith a stem solidness locus in wheat. Crop Sci, 2004, 44: 1937–1402

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!