欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 82-96.doi: 10.3724/SP.J.1006.2017.00082

• 耕作栽培·生理生化 • 上一篇    下一篇

适合不同产量的环境下油菜高收获指数的产量构成因素分析

卢坤1,**,申鸽子1,**,梁颖1,符明联2,贺斌3,铁琳梅3,张烨1,彭柳1,李加纳1,*   

  1. 1西南大学农学与生物科技学院, 重庆 400716; 2云南省农业科学院经济作物研究所,云南昆明 650205;3云南省临沧市农业技术推广站, 云南临沧 677000
  • 收稿日期:2016-03-27 修回日期:2016-09-18 出版日期:2017-01-12 网络出版日期:2016-09-28
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn**
  • 基金资助:

    本研究由国家自然科学基金项目(U1302266和31571701), 国家重点基础研究发展计划(973计划)项目(2015CB150201), 高等学校学科创新引智计划(111计划)项目(B12006)和国家现代产业技术体系建设专项(CARS-13)资助。

Analysis of Yield Components with High Harvest Index in Brassica napusunder Environments Fitting Different Yield Levels

LU Kun1,**,Shen Ge-Zi1,**,LIANG Ying1,FU Ming-Lian2,HE Bin2,TIE Lin-Mei3,ZHANG Ye1, PENG Liu1,LI Jia-Na1,*   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; 2 Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunmimg 650205, China; 3 Agricultural Technology Extension Stationin Lincang City, Lincang 677000, China
  • Received:2016-03-27 Revised:2016-09-18 Published:2017-01-12 Published online:2016-09-28
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn**
  • Supported by:

    This study was supported by the National Science Foundation of China (U1302266and 31571701), the National Basic Research Program of China (2015CB150201), the 111 Project of Chinese Ministry of Education (B12006), and the China Agriculture Research System (CARS-13).

摘要:

收获指数偏低是制约油菜籽粒产量和产油量进一步提高的瓶颈。为解析适合不同产量的环境下油菜高收获指数的构成因素及形成机制,本研究选择在高产环境下的云南临沧和一般产量的长江流域上游主产区重庆北碚均能正常生长和成熟的321份甘蓝型油菜品种(系)为材料,分析其产量相关性状的变异以及两地间的差异,利用相关分析和通径分析研究籽粒产量收获指数、产油量收获指数分别与17个产量组成性状的关系。结果表明, 云南高产环境下,油菜高产的主要原因是光照充足、昼夜温差大,导致生物产量高、角果多、每角粒数多,特别是二次分枝角果对产量贡献较大。主序和一、二次分枝的角果数与产量收获指数在重庆均呈显著正相关,而云南环境下主序角果数与产量收获指数呈显著负相关。主序和一、二次分枝的每角粒数均以云南环境下极显著高于重庆环境下,且在两种环境下,主序和一次分枝每角粒数都与产量收获指数和产油量收获指数呈显著正相关,表明每角粒数需要充足的光合产物积累及高效的籽粒填充效率来保证。主序、一次和二次分枝千粒重云南均低于重庆,表明寡日照区域的油菜会减少籽粒数,以保证部分种子的干物质填充。云南环境下,各部位千粒重与产量收获指数和产油量收获指数均呈显著正相关,而重庆环境下的相关性不明显,说明在光照充足条件下,光合产物转运能力是导致千粒重差异的主要原因。综合分析表明,在光照充足的环境下,主序角果数和单株经济产量是提高YHI的关键;而寡日照环境下YHI构成复杂,必须将主序和一次分枝的产量组分有机结合,且严格控制生物产量才能实现YHI的提高。

关键词: 油菜, 收获指数, 相关分析, 通径分析

Abstract:

Low harvest index is a bottleneck for further improvement of seed yield and oil production in rapeseed (Brassica napus). A total of 321 B. napus accessions with normal growth and maturation at both the super high yield production area Lincang, Yunnan province and the major production area of the upper Yangtze River basin, Beibei, Chongqing were chosen in this study. Variance of yield-related traits and their differences between two locations were compared, and the relationship between yield harvest index (YHI), oil production harvest index (OHI) and 17 yield component traits were also investigated by correlation and path analyses. At Yunnan, the main reasons for high yield of B. napuswereadequate illumination, big diurnal temperature difference, sufficient photosynthate, more biomass, higher number of siliques per plant and seed number per silique, especially the number of siliques on the secondary branches, which might play key roles in improvement ofB. napus yield. The silique number on the main inflorescence, primary and secondary branches was significantly and positively correlated with YHI at Chongqing, but the reverse relationship was observed between YHI and silique number on main inflorescence at Yunnan. The number of seeds per silique on the main inflorescence, primary and secondary branches at Yunnan were significantly higher than those at Chongqing, and the number of seeds per silique on the main inflorescence and primary branch showed significant or extremely significant positive correlation with YHI and OHI simultaneously at both two cultivated areas, suggesting that sufficient accumulation ofphotosynthate and high grain filling efficiency are necessary for large number of seeds per silique.Thousand-seed weights on the main inflorescence, primary and secondary branches at Yunnan were all lower than those at Chongqing, suggesting that once the photosynthate is insufficient, the seed number per plant will decrease and partial seeds will become the priority for seed-filling in B. napus, to ensure the quality of offspring seeds. Under the high yield production condition of Yunnan, thousand-seed weights on three different parts showed significant or remarkably significant positive correlation with YHI and OHI, while those at Chongqing were not, indicating that thousand-seed weight is determined by the transport capacity of photosynthate under the condition of sufficient illumination. In summary, the number of siliques on the main inflorescence andseed yield per plant are two key factors for increasing YHI under adequate illumination environment.Butthe composition of YHI is more complicated under weak illumination environment. Thus, higher YHI could be achieved when the yield components on the main inflorescence and primary branch areorganic ally integrated and biological yield is restrained.

Key words: Brassica napus, Harvest index, Correlation analysis, Path analysis

[1] 蔡东芳. 甘蓝型油菜产量和品质相关性状关联分析. 华中农业大学博士学位论文, 湖北武汉, 2013. pp 1–2
Cai D F. Association mapping of yield and quality-related traits in Brassica napus L.. PhD. Dissertation of Huazhong Agricultural University, Wuhan, China, 2013. pp 1–2 (in Chinese with English abstract)
[2] 李清波. 油菜不同品种及在不同种植密度及施氮条件下产量形成研究. 华中农业大学硕士学位论文, 湖北武汉, 2014. pp 2–8
Li Q B. Studies of the yield formation of various cultivars and under different planting densities and nitrogen applications of oilseed rape. Master Dissertation of Huazhong Agricultural University, Wuhan, China, 2014. pp 2–8 (in Chinese with English abstract)
[3] Randhir S, Malhotra S P, Singh R. Molecular manipulation of sourcesink interactions in crop plants. Proc Indian Natl Sci Acad, 1999, 6: 351–376
[4] Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Sci, 1999, 6: 1611–1621
[5] Hay R K M. Harvest index: a review of its use in plant breeding and crop physiology. Annu Appl Biol, 1995,126: 197–216
[6] 宋荷仙, 李跃建, 冯君成, 刘宗典, 杨永澄. 小麦收获指数和源、库性状的遗传研究. 中国农业科学, 1993, 26(3): 21–26
Song H X, Li Y J, Feng J C, Liu Z D, Yang S C, Genetic research on harvest index and source sink traits of wheat. Sci Agric Sin, 1993, 26(3): 21–26 (in Chinese with English abstract)
[7] 何秀英, 陈钊明, 廖耀平, 程永盛, 陈粤汉. 水稻收获指数遗传及其与主要农艺性状的相关研究. 作物学报, 2006, 6: 911–916
He X Y, Chen Z M, Liao Y P, Cheng Y S, Chen Y H. Heredity of rice harvest index and correlations between HI and main agronomic characters. Acta Agron Sin, 2006, 6: 911–916 (in Chinese with English abstract)
[8] 钟蕾. 不同收获指数型水稻品种产量构成整齐性及生育后期光合特性的差异性分析. 江西农业大学学报, 2012, 34: 627–634
Zhong L. Comparative analysis on the yield component uniformity and photosynthesis characteristics during later growth stages in rice varieties with different harvest indexes. Acta Agri Univ Jiangxiensis (Nat Sci), 2012, 34: 627–634 (in Chinese with English abstract)
[9] Unkovich M, Baldock J, Forbes M. Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv Agron, 2010, 105: 173–219
[10] Kemanian A R, Stöckle C O, Huggins D R, Viega L M. A simple method to estimate harvest index in grain crops. Field Crop Res, 2007, 103: 208–216
[11] 黄露, 陶诗顺, 张敏, 姜磊, 彭雅利. 甘蓝型杂交油菜收获指数及其品种间差异性研究. 江苏农业科学, 2011, 1: 95–97
Huang L, Tao S S, Zhang M, Jiang L, Peng Y L. Differences analysis of harvest and varieties of Brassica napus L. Jiangsu Agric Sci, 2011, 1: 95–97 (in Chinese with English abstract)
[12] 袁婺洲, 官春云. 影响油菜收获指数的几个生理因子.作物学报, 1997, 5: 580–586
Yuan W Z, Guan C Y. Harvest index in rapeseed affected by a few physiological factors. Acta Agron Sin, 1997, 5: 580–586 (in Chinese with English abstract)
[13] Yuan W Z, Guan C Y. The variation of harvest index in Chinese oilseed rape, Life Sci Res, 1998, 3: 212–219
[14] Luo X, Ma C, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J, Shen J, Yi B, Fu T. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16: 379
[15] 卢坤, 王腾岳, 徐新福, 唐章林, 曲存民, 贺斌梁颖, 李加纳. 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016, 3: 344–352
Lu K, Wang T Y, Xu X F , Tang Z L, Qu C M, He B, Liang Y, LI J N. Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agron Sin, 2016, 3: 344–352 (in Chinese with English abstract)
[16] Badger M R. Role of plant leaf development in optimising photosynthetic efficiency, capacity, growth and yield. In: Gready J E, Dwyer S A, Evans J R. eds. Applying photosynthesis research to improvement of food crops. Canberra: Australian Centre for International Agricultural Research, 2009.pp14–19
[17] Evans J R. Improved photosynthetic efficiency is necessary to increase potential crop yield. In: Gready J E, Dwyer S A, Evans J R. eds. Applying Photosynthesis Research to Improvement of Food Crops. Canberra: Australian Centre for International Agricultural Research, 2009. pp 27–34
[18] 程永盛, 廖耀平, 何秀英, 陈钊明, 陈粤汉. 水稻收获指数与单株产量及其构成因素的相关和通径分析. 广东农业科学, 2006, (9): 36–38
Chen YS, Liao Y P, He X Y, Cheng Z M, Cheng Y H. Path and coefficient analysis of harvest index, yield per plant and its components in rice. Guangdong Agric Sci, 2006, (9): 36–38 (in Chinese)
[19] 姚金保, 姚国才, 杨学明, 马鸿翔, 张平平. 小麦收获指数遗传及其与农艺性状的相关分析. 江苏农业学报, 2008, (1): 5–10
Yao J B, Yao G C, Yang X M, Ma H X, Zhang P P. Inheritance of wheat harvest index and its correlations with agronomic traits. Jiangsu Agr Sci, 2008, (1): 5–10 (in Chinese with English abstract)
[20]Asghari A R. Investigate the relationship and path coefficient analysis between yield and yield components of canola cultivars. Int J Farm Alli Sci. 2013, 2: 104

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!