欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 307-312.doi: 10.3724/SP.J.1006.2017.00307

• 研究简报 • 上一篇    

与小麦抗白粉病基因Pm48紧密连锁分子标记的开发

付必胜1,**,刘颖1,2,**,张巧凤1,吴小有1,高海东3,蔡士宾1,戴廷波2,*,吴纪中1,*   

  1. 1江苏省农业科学院粮食作物研究所 / 江苏省农业种质资源保护与利用平台, 江苏南京 210014; 2南京农业大学农学院, 江苏南京 210095; 3南京集思慧远生物科技有限公司, 江苏南京 210014
  • 收稿日期:2016-07-26 修回日期:2016-11-02 出版日期:2017-02-12 网络出版日期:2016-11-15
  • 通讯作者: 吴纪中, E-mail: wujz@jaas.ac.cn, Tel: 025-84391667; 戴廷波, E-mail: tingbod@njau.edu.cn, Tel: 025-84395033
  • 基金资助:

    本研究由国家科技支撑计划项目(2013BAD01B02-12),国家现代农业产业技术体系建设专项(CARS-3-1-17),江苏省农业科技自主创新资金项目(CX(14)5006)和江苏省自然科学基金(BK2012783)资助。

Development of Markers Closely Linked with Wheat Powdery Mildew Resistance Gene Pm48

FU Bi-Sheng1,**,LIU Ying1,2,**,ZHANG Qiao-Feng1,WU Xiao-You1,GAO Hai-Dong3,CAI Shi-Bin1,DAI Ting-Bo2,*,WU Ji-Zhong1,*   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Provincial Platform for Conservation and? Utilization of Agricultural Germplasm, Nanjing 210014, China; 2 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 3 Genepioneer Biotechnologies Co. Ltd., Nanjing 210014, China
  • Received:2016-07-26 Revised:2016-11-02 Published:2017-02-12 Published online:2016-11-15
  • Contact: 吴纪中, E-mail: wujz@jaas.ac.cn, Tel: 025-84391667; 戴廷波, E-mail: tingbod@njau.edu.cn, Tel: 025-84395033
  • Supported by:

    This study was supported by the National Key Technology R&D Program of China (2013BAD01B02-12), the China Agriculture Research System (CARS-3-1-17), Jiangsu Provincial Foundation of Agricultural Scienti?c Innovation [CX (14)5006], and the Natural Science Foundation of Jiangsu Province (BK2012783).

摘要:

Pm48为本实验室鉴定的一个抗白粉病新基因。为精细定位该基因,利用混池ddRAD测序鉴定了81个与该基因关联的序列,开发了STS标记Xmp931,转化了CAPS标记Xmp928Xmp930Xmp936;同时,利用粗山羊草基因组序列开发了71个基因组SSR标记,定位了其中的Xmp1089Xmp1112。在115个宁糯麦1号´Tabasco衍生的 F2:3家系中,Xmp928与目的基因共分离,Xmp1112位于近着丝粒方向处距抗病基因3.1 cM。在671个纯合感病家系中,标记Xmp928仍与目的基因共分离。利用3个中国春5DS缺失系,最终将Pm48定位在小麦5DS上0.63–0.67的臂区段中。

关键词: 小麦, 抗白粉病基因, 分子标记, 混池ddRAD测序

Abstract:

Pm48 is a novel powdery mildew resistance gene identified previously in our laboratory. This study aimed at developing close molecular markers for fine mapping of the gene. The ddRAD-sequencing assay revealed 81 SNPs associated with the target gene, in which one converted into the STS marker Xmp931 and three converted into the CAPS markers Xmp928, Xmp930, and Xmp936. We also developed 71 genomic SSR markers according to the genome sequence of Aegilops tauschii. And mapped two of them, Xmp1089 and Xmp1112. Using the 115 F2:3 families derived from the cross of Ningnuomai 1 ´ Tabasco, the target gene was found to be co-segregated with Xmp928 and distal to Xmp1112 with the genetic distance of 3.1 cM towards centromere. In the 671 homozygous susceptible families, Xmp928 also showed co-segregated with the target gene. We also physically mapped Pm48 to the bin of 5DS 0.63–0.67 by using three Chinese Spring 5DS deletion lines.

Key words: Wheat, Powdery mildew resistance gene, Molecular markers, Bulked ddRAD-seq

[1]Johnson J, Baenziger P, Yamazaki W, Smith R. Effects of powdery mildew on yield and quality of isogenic lines of 'Chancellor' wheat. Crop Sci, 1979, 19: 349–352
[2]Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403
[3]Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet, 2013, 54: 259–263
[4]Zhan H, Li G, Zhang X, Li X, Guo H, Gong W, Jia J, Qiao L, Ren Y, Yang Z, Chang Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS One, 2014, 9: e113455
[5]Xu H, Yi Y, Ma P, Qie Y, Fu X, Xu Y, Zhang X, An D. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet, 2015, 128: 2077–2084
[6]Hyten D, Cannon S, Song Q, Weeks N, Fickus E, Shoemaker R, Specht J, Farmer A, May G, Cregan P. Highthroughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics, 2010, 11: 38
[7]Pfender W, Saha M, Johnson E, Slabaugh M. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet, 2011, 122:1467–1480
[8]Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol, 2012, 12: 148
[9]Peterson B K, Weber J N, Kay E H, Fisher H S, Hoekstra H E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 2012, 7: e37135
[10]Davik J, Sargent D J, Brurberg M B, Lien S, Kent M, Alsheikh M. A ddRAD based linkage map of the cultivated strawberry, Fragaria xananassa. PLoS One, 2015, 10: e0137746
[11]Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 2014, 15: 351
[12]Wu Z, Wang B, Chen X, Wu J, King G, Xiao Y, Liu K. Evaluation of linkage disequilibrium pattern and association study on seed oil content in Brassica napus using ddRAD sequencing. PLoS One, 2016, 11: e0146383
[13]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA, 2003, 100: 15253–15258
[14]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268
[15]Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323: 1357–1360
[16]Krattinger S, Lagudah E, Spielmeyer W, Singh R, Huerta-Espino J, McFadden H, Bossolini E, Selter L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363
[17]Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528–538
[18]Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732
[19]Gao H, Zhu F, Jiang Y, Wu J, Yan W, Zhang Q, Jacobi A, Cai S. Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet, 2012, 125: 967–973
[20]McIntosh R, Dubcovsky J, Rogers W, Morris W, Appels R, Xia X. Catalogue of gene symbols for wheat: 2013–2014 supplement, http://www.wheat.pw.usda.gov/GG2/pubs.shtml
[21]Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307
[22]盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, (1): 14
Sheng B Q. Infection reaction types against wheat powdery mildew at seedling stage. Plant Prot, 1988, (1): 14 (in Chinese)
[23]Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome, 1994, 37: 871–875
[24]Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[25]刘仁虎, 孟金陵. MapDraw, 在Exel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317–321
Liu R, Meng J. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing), 2003, 25: 317–321 (in Chinese)
[26]Kosambi D. The estimation of map distances from recombination values. Ann Eugenics, 1943, 12: 172–175
[27]You F M, Wanjugi H, Huo N, Lazo G R, Luo M C, Anderson O D, Dvorak J, Gu Y Q. RJPrimers: unique transposable element insertion junction identification and primer design for marker development. Nucl Acid Res, 2010, 38: 313–320
[28]Xue S, Zhang Z, Lin , Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet, 2008, 117: 181–189
[29]Suenaga K, Khairallah M, William H, Hoisington D. A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome, 2005, 48: 65–75
[30]Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 107: 1235–1242
[31]Akpinar B, Magni F, Yuce M, Lucas S, Šimková H, Šafá? J, Vautrin S, Bergès H, Cattonaro F, Dole?el J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics, 2015, 16: 453
[32]Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger P S, Gill K S. Demarcating the gene-rich regions of the wheat genome. Nucl Acids Res, 2004, 32: 3546–3565

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!