[1]Johnson J, Baenziger P, Yamazaki W, Smith R. Effects of powdery mildew on yield and quality of isogenic lines of 'Chancellor' wheat. Crop Sci, 1979, 19: 349–352
[2]Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403
[3]Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet, 2013, 54: 259–263
[4]Zhan H, Li G, Zhang X, Li X, Guo H, Gong W, Jia J, Qiao L, Ren Y, Yang Z, Chang Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PLoS One, 2014, 9: e113455
[5]Xu H, Yi Y, Ma P, Qie Y, Fu X, Xu Y, Zhang X, An D. Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet, 2015, 128: 2077–2084
[6]Hyten D, Cannon S, Song Q, Weeks N, Fickus E, Shoemaker R, Specht J, Farmer A, May G, Cregan P. Highthroughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics, 2010, 11: 38
[7]Pfender W, Saha M, Johnson E, Slabaugh M. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet, 2011, 122:1467–1480
[8]Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol, 2012, 12: 148
[9]Peterson B K, Weber J N, Kay E H, Fisher H S, Hoekstra H E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 2012, 7: e37135
[10]Davik J, Sargent D J, Brurberg M B, Lien S, Kent M, Alsheikh M. A ddRAD based linkage map of the cultivated strawberry, Fragaria xananassa. PLoS One, 2015, 10: e0137746
[11]Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 2014, 15: 351
[12]Wu Z, Wang B, Chen X, Wu J, King G, Xiao Y, Liu K. Evaluation of linkage disequilibrium pattern and association study on seed oil content in Brassica napus using ddRAD sequencing. PLoS One, 2016, 11: e0146383
[13]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA, 2003, 100: 15253–15258
[14]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268
[15]Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 2009, 323: 1357–1360
[16]Krattinger S, Lagudah E, Spielmeyer W, Singh R, Huerta-Espino J, McFadden H, Bossolini E, Selter L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363
[17]Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528–538
[18]Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732
[19]Gao H, Zhu F, Jiang Y, Wu J, Yan W, Zhang Q, Jacobi A, Cai S. Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet, 2012, 125: 967–973
[20]McIntosh R, Dubcovsky J, Rogers W, Morris W, Appels R, Xia X. Catalogue of gene symbols for wheat: 2013–2014 supplement, http://www.wheat.pw.usda.gov/GG2/pubs.shtml
[21]Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307
[22]盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, (1): 14
Sheng B Q. Infection reaction types against wheat powdery mildew at seedling stage. Plant Prot, 1988, (1): 14 (in Chinese)
[23]Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome, 1994, 37: 871–875
[24]Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[25]刘仁虎, 孟金陵. MapDraw, 在Exel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317–321
Liu R, Meng J. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing), 2003, 25: 317–321 (in Chinese)
[26]Kosambi D. The estimation of map distances from recombination values. Ann Eugenics, 1943, 12: 172–175
[27]You F M, Wanjugi H, Huo N, Lazo G R, Luo M C, Anderson O D, Dvorak J, Gu Y Q. RJPrimers: unique transposable element insertion junction identification and primer design for marker development. Nucl Acid Res, 2010, 38: 313–320
[28]Xue S, Zhang Z, Lin , Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet, 2008, 117: 181–189
[29]Suenaga K, Khairallah M, William H, Hoisington D. A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome, 2005, 48: 65–75
[30]Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 107: 1235–1242
[31]Akpinar B, Magni F, Yuce M, Lucas S, Šimková H, Šafá? J, Vautrin S, Bergès H, Cattonaro F, Dole?el J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics, 2015, 16: 453
[32]Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger P S, Gill K S. Demarcating the gene-rich regions of the wheat genome. Nucl Acids Res, 2004, 32: 3546–3565 |