欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 296-306.doi: 10.3724/SP.J.1006.2017.00296

• 研究简报 • 上一篇    下一篇

壮秆剂及用量对水稻产量和抗倒伏能力的影响

夏敏1,胡群1,梁健1,张洪程1,*,郭保卫1,曹利强1,陈厚存2   

  1. 1扬州大学农业部长江流域稻作技术创新中心 / 扬州大学江苏省作物遗传生理重点实验室, 江苏扬州 225009; 2海安县作物栽培指导站, 江苏海安 226600
  • 收稿日期:2016-05-24 修回日期:2016-11-02 出版日期:2017-02-12 网络出版日期:2016-01-22
  • 通讯作者: 张洪程, E-mail: hczhang@yzu.edu.cn
  • 基金资助:

    本研究由江苏省农业自主创新基金项目(CX[15]1002), 江苏省农业科技自主创新基金项目(CX[12]1003-9), 国家自然科学基金项目(31601246)和扬州大学科技创新培育基金项目(2015CXJ042)资助。

Effect of Variety and Application Amount of Stalk Strengthening Agent on Yield and Lodging Resistance in Rice

XIA Min1,HU Qun1,LIANG Jian1,ZHANG Hong-Cheng1,*,GUO Bao-Wei1,CAO Li-Qiang1,CHEN Hou-Cun2   

  1. 1 Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, China; 2 Crop Cultivation Technology Guidance Station, Hai,an County, Hai’an 226600, China
  • Received:2016-05-24 Revised:2016-11-02 Published:2017-02-12 Published online:2016-01-22
  • Contact: Zhang Hongcheng, E-mail: hczhang@yzu.edu.cn
  • Supported by:

    This work was financed by the Agricultural Independent Innovation Fund of Jiangsu Province (CX[15]1002), the Independent Innovation Fund of Agricultural Science and Technology of Jiangsu Province (CX[12]1003-9), the National Natural Science Foundation of China (31601246), and the Cultivation of Science and Technology Innovation Fund of Yangzhou University (2015CXJ042).

摘要:

以籼粳杂交稻品种甬优2640、超级稻南粳9108为供试材料, 设置壮秆剂A (壮秧剂∶速效硅∶生物炭=1.0∶0.5∶1.0) 5个处理(A-1: 18.75 kg hm–2、A-2: 37.5 kg hm–2、A-3: 56.25 kg hm–2、A-4: 75 kg hm–2、A-5: 93.75 kg hm–2), 壮秆剂B (“杰伟”牌水稻生长调节剂) 5个处理(B-1: 7.5 kg hm–2、B-2: 15 kg hm–2、B-3: 22.5 kg hm–2、B-4: 30 kg hm–2、B-5: 37.5 kg hm–2)。在齐穗后30 d观测水稻基部第1节间(N1)、第2节间(N2)、第3节间(N3)、第4节间(N4)抗倒伏能力和主要物理性状, 比较研究壮秆剂不同用量对水稻产量及抗倒伏能力的影响。两年试验结果表明, 壮秆剂A对水稻产量及抗倒伏能力的影响要优于壮秆剂B, 随着壮秆剂用量的增加水稻产量呈先增后减的趋势, 其中A-3处理产量最高, 其原因在于每穗粒数、结实率、千粒重均有所增加, 壮秆剂B中B-3产量最高, 壮秆剂A增产效果优于B的原因在于千粒重的增加。随着壮秆剂用量的增加, 各节间倒伏指数呈现先减后增趋势, 其中A-3、A-4处理的N2、N3倒伏指数显著小于对照。进一步分析壮秆剂A与B抗倒伏能力增强的原因在于抗折力的增加, 壮秆剂A主要是通过增加N1、N2、N3节间茎秆粗度、茎壁厚度和节间充实度增强了抗倒伏能力, 壮秆剂B主要是增加N1、N2、N3节间茎壁厚度来增强抗倒伏能力, 两者比较壮秆剂A效果更明显。

关键词: 壮秆剂用量, 产量, 抗倒伏能力

Abstract:

A field experiment was conducted using indica-japonica hybrid rice Yongyou 2640 and super rice cultivar Nanjing 9108, with five treatments (A-1: 18.75 kg ha–1, A-2: 37.5 kg ha–1, A-3: 56.25 kg ha–1, A-4: 75.00 kg ha–1, A-5: 93.75 kg ha–1) of stalk strengthening agent A (seedling strengthening agent : quick acting silicon : biochar = 1.0 : 0.5 : 1.0), and five treatments (B-1: 7.5 kg ha–1, B-2: 15 kg ha–1, B-3: 22.5 kg ha–1, B-4: 30 kg ha–1, B-5: 37.5 kg ha–1) of stalk strengthening agent B (Jiewei growth regulators of rice). In the thirtieth days after full heading, the lodging resistance of the first basal internode (N1), the second basal internode (N2), the third basal internode (N3), the fourth basal internode (N4), and main physical characteristics were studied. The effect of stalk strengthening agent A on yield and lodging resistance was better than that of stalk strengthening agent B. With the increase of application amount of stalk strengthening agent, the yield increased firstly and decreased then, with the highest yield in A-3, resulting from the increase of spikelets per panicle, seed-setting rate and 1000-grain weight, and in B-3 resulting from the increase of 1000-grain weight. In contrary, lodging index decreased firstly and increased then, with the significant decrease of the second basal internode and the third basal internode of A-3 and A-4. The reason lodging resistance increased was the increase of breaking resistance, through the increase of culm diameter, culm wall thickness and plumpness in N1, N2, and N3 by stalk strengthening agent A, and of culm wall thickness in N1, N2, and N3 by stalk strengthening agent B, showing advantage effect of agent A than agent B.

Key words: Application amount of stalk strengthening agent, Yield, Lodging resistance

[1]凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2005
Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2005 (in Chinese)
[2]许俊伟, 孟天瑶, 荆培培, 张洪程, 李超, 戴其根, 魏海燕, 郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响. 作物学报, 2015, 41: 1767–1776
Xu J W, Meng T Y, Jing P P, Zhang H C, Li C, Dai Q G, Wei H Y, Guo B W. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice. Acta Agron Sin, 2015, 41: 1767–1776 (in Chinese with English abstract)
[3]张忠旭, 陈温福, 杨振玉, 华泽田, 高日玲, 高勇, 赵迎春. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响. 沈阳农业大学学报, 1999, 30(2): 81–85
Zhang Z X, Chen W F, Yang Z Y, Hua Z T, Gao R L, Gao Y, Zhao Y C. Effect of lodging resistance on yield and its relationship with stalk physical characteristics. J Shenyang Agric Univ, 1999, 30(2): 81–85 (in Chinese with English abstract)
[4]黄艳玲, 石英尧, 申广勒, 石扬娟, 王维刚, 陈多璞. 水稻茎秆性状与抗倒伏及产量因子的关系. 中国农学通报, 2008, 24(4): 203–206
Huang Y L, Shi Y Y, Shen G L, Shi Y J, Wang W G, Chen D P. Study on the relationship between rice lodging resistance and culm traits & the yield factors. Chin Agric Sci Bull, 2008, 24(4): 203–206 (in Chinese with English abstract)
[5]杨艳华, 朱镇, 张亚东, 陈涛, 赵庆勇, 周丽慧, 姚姝, 张颖慧, 董少玲, 王才林. 不同水稻品种(系)抗倒伏能力与茎秆形态性状的关系. 江苏农业学报, 2011, 27(2): 231–235
Yang Y H, Zhu Z, Zhang Y D, Chen T, Zhao Q Y, Zhou L H, Yao S, Zhang Y H, Dong S L, Wang C L. Relationship between lodging resistance and stem morphological traits in different rice varieties (lines). Jiangsu J Agric Sci, 2011, 27(2): 231–235 (in Chinese with English abstract)
[6]李国辉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 何庭蕙. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理. 中国农业科学, 2013, 46: 1323-1334
Li G H, Zhong X H, Tian K, Huang N R, Pan J F, He T H. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Sci Agric Sin, 2013, 46: 1323–1334 (in Chinese with English abstract)
[7]申广勒, 石英尧, 黄艳玲, 石扬娟, 王维刚, 张从合, 陈多璞. 水稻抗倒伏特性及其与茎秆性状的相关性研究. 中国农学通报, 2007, 23(12): 58–62
Shen G L, Shi Y Y, Huang Y L, Shi Y J, Wang W G, Zhang C H, Chen D P. Study on rice lodging resistance character and correlation between the culm traits and lodging resistance traits. Chin Agric Sci Bull, 2007, 23(12): 58–62 (in Chinese with English abstract)
[8]李红娇, 张喜娟, 李伟娟, 徐正进. 超高产粳稻品种抗倒伏性的初步研究. 北方水稻, 2008, 38(2): 22–27
Li H J, Zhang X J, Li W J, Xu Z J. Initial research on lodging resistance in super high-yielding japonica rice cultivars. North Rice, 2008, 38(2): 22–27 (in Chinese with English abstract)
[9]李杰, 张洪程, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同种植方式对超级稻植株抗倒伏能力的影响. 中国农业科学, 2011, 44: 2234–2243
Li J, Zhang H C, Gong J L, Chang Y, Dai Q G, Huo Z Y, Xu K, Wei H Y. Effects of different planting methods on the culm lodging resistance of super rice. Sci Agric Sin, 2011, 44: 2234–2243 (in Chinese with English abstract)
[10]董丹, 陈书强, 刘柏林, 王嘉宇, 徐正进. 直立穗型基因对水稻抗倒伏能力的影响. 江西农业大学学报, 2009, 31(2): 202–207
Dong D, Chen S Q, Liu B L, Wang J Y, Xu Z J. Effects of erect panicle gene on lodging resistance of rice. Acta Agric Univ       Jiangxiensis, 2009, 31(2): 202–207 (in Chinese with English           abstract)
[11]李红娇, 张喜娟, 李伟娟, 徐正进, 徐海. 不同穗型粳稻品种抗倒伏性的比较. 中国水稻科学, 2009, 23: 191–196
Li H J, Zhang X J, Li W J, Xu Z J, Xu H. Lodging resistance in japonica rice varieties with different panicle types. Chin J Rice Sci, 2009, 23: 191–196 (in Chinese with English abstract)
[12]张喜娟, 李红娇, 李伟娟, 徐正进, 陈温福, 张文忠, 王嘉宇. 北方直立穗型粳稻抗倒性的研究. 中国农业科学, 2009, 42: 2305–2313
Zhang X J, Li H J, Li W J, Xu Z J, Chen W F, Zhang W Z, Wang J Y. The lodging resistance of erect panicle japonica rice in northern China. Sci Agric Sin, 2009, 42: 2305–2313 (in Chinese with English abstract)
[13]刘立军, 袁莉民, 王志琴, 徐国伟, 陈云. 旱种水稻倒伏生理原因分析与对策的初步研究. 中国水稻科学, 2002, 16: 225-230
Liu L J, Yuan L M, Wang Z Q, Xu G W, Chen Y. Preliminary studies on physiological reason and countermeasure of lodging in dry-cultivated rice. Chin J Rice Sci, 2002, 16: 225–230 (in Chinese with English abstract)
[14]Nickell L G. Plant growth regulator. In: Hedin P A. Proceedings of the Eighteen Annual Meeting of American Society. New York, 1991
[15]Bandara P M S, Tanino K K. Paclobutrazol enhances minituber production in Norland potatoes. J Plant Growth Regul, 1995, 14: 151–155
[16]王熹, 陶龙兴. 大田作物化控技术研究进展与应用前景. 中国农业科技导报, 2000, 2(2): 55–57
Wang X, Tao L X. The research development and application prospect of control technology for crop. Agric Sci Technol News, 2000, 2(2): 55–57 (in Chinese with English abstract)
[17]王熹, 俞美玉, 陶龙兴. 作物化控原理. 北京: 中国农业科技出版社, 1997
Wang X, Yu M Y, Tao L X. Chemical Regulation of Crop. Beijing: China Agricultural Science and Technology Press, 1997 (in Chinese with English abstract)
[18]王曙光, 宁幸连, 王宝明, 曹广, 孙黛珍. 一种新型植物生长调节剂对水稻产量的影响. 山西农业科学, 2012, 40(4): 365–367
Wang S G, Ning X L, Wang B M, Cao G, Sun D Z. Effects of a new plant growth regulator on yield of rice. J Shanxi Agric Sci, 2012, 40(4): 365–367 (in Chinese with English abstract)
[19]付腾腾, 朱建强, 张淑贞, 戴思薇. 植物生长调节剂在作物上的应用研究进展. 长江大学学报(自然科学版), 2011, 8(10): 233–235
Fu T T, Zhu J Q, Zhang S Z, Dai S W. Research progress of plant growth regulator on crop. J Yangtze Univ (Nat Sci Edn), 2011, 8(10): 233–235 (in Chinese)
[20]梅晓岩, 刘荣厚, 曹卫星. 植物生长调节剂对甜高粱茎秆贮藏中糖分变化的影响. 农业工程学报, 2012, 28(15): 179–184
Mei X Y, Liu R H, Cao W X. Effects of pretreatment of sweet sorghum stalk with plant growth regulator on its sugar content during storage. Trans CSAE, 2012, 28(15): 179–184 (in Chinese with English abstract)
[21]李振. 两种植物生长调节剂对连作苹果的调控作用研究. 山东农业大学硕士学位论文, 山东泰安, 2013. pp 36–38
Li Z. Two Plant Growth Regulators on Regulation to Replanted Apple. MS Thesis of Shandong Agricultural University, Tai’an, China, 2013. pp 36–38 (in Chinese with English abstract)
[22]霍珊珊, 惠竹梅, 马立娜, 栾丽英. 植物生长调节剂对赤霞珠葡萄果实品质的影响. 西北农林科技大学学报(自然科学版), 2012, 40(1): 184–189
Huo S S, Hui Z M, Ma L N, Luan L Y. Effect of plant growth regulator on the quality of cabernet sauvignon grape. J Northwest A&F Univ (Nat Sci Edn), 2012, 40(1): 184–189 (in Chinese with English abstract)
[23]邓文韬, 张日清, 袁德义. 植物生长调节剂对菲油果嫩枝扦插生根的影响. 中南林业科技大学学报, 2011, 31(3): 161–163
Deng W T, Zhang R Q, Yuan D Y. Effect of plant growth regulators on rooting in Feijoa sellowiana. J Central South Univ For & Technol, 2011, 31(3): 161–163 (in Chinese with English abstract)
[24]王明. 外源植物生长调节剂提高番茄幼苗弱光逆境适应性的生理效应. 中国农业科学院硕士学位论文, 北京, 2008. pp 41–42
Wang M. The Physiological Effects of Exogenous Plant Growth Regulators on Improving the Resistance to Weak Light Stress in Tomato Seedlings. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2008. pp 41–42 (in Chinese with English abstract)
[25]吴峰. 植物生长调节剂在芹菜种子包衣技术中的应用研究. 中国农业科学院硕士学位论文, 北京, 2013. p 44
Wu F. Research on the Application of Plant Growth Regulators in Celery Seed Coating Technology. MS Thesis of Chinese Acade¬my of Agricultural Sciences. Beijing, China, 2013. p 44 (in Chinese with English abstract)
[26]彭忠华, 吴盛黎, 何邦金, 邹天申. 不同植物生长调节剂对水稻生长发育及产量的影响. 贵州农业学报, 1998, 26(4): 28–31
Peng Z H, Wu S L, He B J, Zou T S. Effect of different growth regulators on growth and development in rice. Guizhou Agric Sci, 1998, 26(4): 28–31 (in Chinese with English abstract)
[27]王绍忠, 于树林, 顾莉, 刁立伟, 王建军. 植物生长调节剂对水稻产量的影响. 土壤肥料, 2005, (1): 42–43
Wang S Z, Yu S L, Gu L, Diao L W, Wang J J. Effect of different plant growth regulators on the yield of rice. Soil Fert, 2005, (1): 42–43 (in Chinese with English abstract)
[28]Seko H. Studies on lodging in rice plants. J Kyushu Agric Exp Stn, 1962, 7: 419–495 (in Japanese)
[29]陈娟, 陈建萍, 蒋莲芬, 胡芳芳. 不同生长调节剂对水稻生长发育和产量结构的影响. 农业装备技术, 2015, 41(5): 27–29
Chen J, Chen J P, Jiang L F, Hu F F. Effect of different growth regulators on growth and yield in rice. Agric Equip & Technol, 2015, 41(5): 27–29 (in Chinese)
[30]李卫国. 硅肥对水稻产量及其构成因素的影响. 山西农业科学, 2002, 30(4): 42–44
Li W G. Effects of Si fertilization on rice yield and component factors. J Shanxi Agric Sci, 2002, 30(4): 42–44 (in Chinese with English abstract)
[31]张国良, 戴其根, 周青, 潘国庆, 凌励, 张洪程. 硅肥对水稻群体质量及产量影响研究. 中国农学通报, 2004, 20(3): 114–117
Zhang G L, Dai Q G, Zhou Q, Pan G Q, Ling L, Zhang H C. Influences of sillicon fertilizer on populication quality and yield in rice. Chin Agric Sci Bull, 2004, 20(3): 114–117 (in Chinese with English abstract)
[32]邓接楼, 王艾平, 何长水, 王爱斌, 徐芬芬. 硅肥对水稻生长发育及产量品质的影响. 广东农业科学, 2011, (12): 58–61
Deng J L, Wang A P, He C S, Wang A B, Xu F F. The effect of sillicom fertilizer on growth and development, yield and quality of rice. J Guangdong Agric Sci, 2011, (12): 58–61 (in Chinese with English abstract)
[33]史春余, 金留福, 傅金民, 张红. 抗倒胺对水稻秧苗素质和与抗倒伏有关性状的影响. 植物生理学通讯, 1997, 33: 343–344
Shi C Y, Jin L F, Fu J M, Zhang H. The effect of inabenfide on the rice seedling quality and some characteristics in relation to the lodging of rice plants. Plant Physiol Commun, 1997, 33: 343–344 (in Chinese with English abstract)
[34]林志强, 苏连庆, 陈进明, 林文. 水稻喷施立丰灵的抗倒增产效应. 福建稻麦科技, 2003, 21(2): 33–35
Lin Z Q, Su L Q, Chen J M, Lin W. Effect of spraying Lifengling on lodging resistance and yield of rice. Fujian Sci & Technol Rice & Wheat, 2003, 21(2): 33–35 (in Chinese)
[35]张晶, 石扬娟, 任洁, 刘周, 石英尧. 硅肥用量对水稻茎秆抗折力的影响研究. 中国农学通报, 2014, 30(3): 49–55
Zhang J, Shi Y J, Ren J, Liu Z, Shi Y Y. The effect of silicon fertilizer on flexural strength of rice culm. Chin Agric Sci Bull, 2014, 30(3): 49–55 (in Chinese with English abstract)
[36]朱纪谷. 多效唑在水稻抗倒伏上的应用效果研究. 现代农业科技, 2013, (30): 133
Zhu J G. Study on the application effect of paclobutrazol on lodging resistance in rice. Modern Agric Sci & Technol, 2013, (30): 133 (in Chinese)
[37]房增国, 赵秀芬, 高祖明. 多效唑提高植物抗逆性的研究进展. 中国农业科技导报, 2005, 7(4): 9–12
Fang Z G, Zhao X F, Gao Z M. Research progress of plant stress resistance improvement applying paclobutrazol. Rev China Agric Sci & Technol, 2005, 7(4): 9–12 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!