欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 286-295.doi: 10.3724/SP.J.1006.2017.00286

• 耕作栽培·生理生化 • 上一篇    下一篇

长期施肥对南方典型水稻土养分含量及真菌群落的影响

陈丹梅1,袁玲1,*,黄建国1,冀建华2,侯红乾2,刘益仁2,*   

  1. 1西南大学资源环境学院, 重庆 400716; 2江西省农业科学院土壤肥料与资源环境研究所, 江西南昌 330200
  • 收稿日期:2015-12-08 修回日期:2016-09-18 出版日期:2017-02-12 网络出版日期:2016-09-27
  • 通讯作者: 袁玲, E-mail: lingyuanh@aliyun.com; 刘益仁, E-mail: jxnclyr@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31460544), 江西省农业科学院博士启动基金(2012CBS011), 国家科技支撑计划项目(2012BAD05B05)和国家公益性行业科研专项(201203030)资助。

Influence of Long-term Fertilizations on Nutrients and Fungal Communities in Typical Paddy Soil of South China

CHEN Dan-Mei1,YUAN Ling1,*,HUANG Jian-Guo1,JI Jian-Hua2,HOU Hong-Qian2,LIU Yi-Ren2,*   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400716, China; 2Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
  • Received:2015-12-08 Revised:2016-09-18 Published:2017-02-12 Published online:2016-09-27
  • Contact: 袁玲, E-mail: lingyuanh@aliyun.com; 刘益仁, E-mail: jxnclyr@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31460544), the Doctoral Scientific Research Foundation of Jiangxi Academy of Agricultural Sciences (2012CBS011), the National Support Program of China (2012BAD05B05), and the China Special Fund for Agro-scientific Research in the Public Interest (201203030).

摘要:

利用江西省农业科学院31年的长期肥料定位试验,选取不施肥(对照)、单施化肥、70%化肥配施30%有机肥、50%化肥配施50%有机肥和30%化肥配施70%有机肥等5个处理,通过常规分析和454-高通量测序技术,研究了长期不同施肥条件下,我国南方典型水稻土养分含量和真菌群落结构的变化。结果表明,在酸性水稻土上,长期单施化肥显著降低土壤pH值,但随着有机肥配施比例的提高pH明显上升;有机和无机肥配施显著提高土壤有机质、有效氮磷含量以及微生物碳氮量。单施化肥土壤真菌18S rDNA序列数比配施有机肥的多1倍,但真菌种()数减少了11~40种;前20种优势真菌的丰富度占真菌总量的78.82%~91.51%,以子囊菌最多(7~13),所占比例最大(23.13%~75.09%);与对照相比,配施有机肥的土壤中有14~15种优势真菌与之相同,而单施化肥的土壤中仅有9种一致;主成分分析结果表明单施化肥处理的真菌群落组成与其他各处理存在显著差异因此,单施化肥造成土壤酸化加剧,真菌数量成倍增加,但种类显著减少,其丰富度和多样性明显降低,并改变优势真菌种群,相应提高了土壤病原真菌过度繁殖的风险。而有机和无机肥配施有利于维持水稻土壤健康生态环境和真菌种群多样性。

关键词: 长期施肥, 水稻, 土壤养分, 真菌

Abstract:

 

A long-term field experiment was carried out for 31 years in Jiangxi Academy of Agricultural Sciences with a typical paddy soil in South China to study the influence of fertilizer application on changes of soil nutrients and fungal communities by rational analysis and 454 high-throughput sequencing technology. The fertilization treatments included control (without fertilizer), sole chemical fertilizer, 70% chemical fertilizer in combination with 30% organic fertilizer, 50% chemical fertilizer in combination with 50% organic fertilizer and 30% chemical fertilizer in combination with 70% organic fertilizer. The soil pH decreased in the treatment of sole chemical fertilizer, but increased obviously with the proportion of organic fertilizer increased. Organic-inorganic fertilizations significantly increased organic matter, available nitrogen and phosphorus, and microbial biomass carbon and nitrogen in the soil. The number of soil fungal 18S rDNA sequences was doubled while the species number of fungi decreased by 11-40 when received chemical fertilizer only, compared with the treatment of organic-inorganic fertilization. The top 20 predominant fungi ranged from 78.82% to 91.51% of the total in soil, and among them 7-13 species attributed to Ascomycetes which was the largest soil fungal group and accounted for 23.13%-75.09% of the top 20 predominant fungi. Compared with the control, 14-15 of the same species of dominant fungi were found in the treatment of organic-inorganic fertilizers but only nine in the treatment of sole chemical fertilizer. Principal component analysis showed the significant difference in soil fungal community compositions between treatment of sole chemical fertilizer and others. In general, sole application of chemical fertilizer results in soil acidification, and exponential increment of soil fungi, but significant reduction in their species, richness and diversity indexes, suggesting the great changes in fungal community composition and the risk of over production of pathogen fungi in the soil. On the contrary, organic-inorganic fertilization treatment is beneficial to maintain the healthy ecological environment of paddy soil and the diversity of soil fungal communities.

Key words: Long-term fertilization, Rice, Soil nutrients, Fungus

[1]谢振宇, 尹明, 贺治洲. 施肥水平对杂交水稻产量及其构成因素的影响. 热带农业科学, 2014, 34(1): 1–4
Xie Z Y, Yin M, He Z Z. Effect of different fertilizer application rates on yield and its components of hybrid rice. Chin J Trop Agric, 2014, 34(1): 1–4 (in Chinese with English abstract)
[2]李云, 冯跃华, 王小艳, 武彪. 基于主成分回归的土壤养分与水稻产量的关系. 贵州农业科学, 2013, 41: 50–54
Li Y, Feng Y H, Wang X Y, Wu B. Relationship between soil nutrient and rice yield based on principal component regression. Guizhou Agric Sci, 2013, 41: 50–54 (in Chinese with English abstract)
[3]孙建, 刘苗, 李立军, 刘景辉. 不同施肥处理对土壤理化性质的影响. 华北农学报, 2010, 25: 221–225
Sun J, Liu M, Li L J, Liu J H. The effect of different fertilization treatments on soil physical and chemical property. Acta Agric Boreali-Sin, 2010, 25: 221–225 (in Chinese with English abstract)
[4]潘福霞, 鲁剑巍, 刘威, 耿明建, 李小坤, 曹卫东. 不同种类绿肥翻压对土壤肥力的影响. 植物营养与肥料学报, 2011, 17: 1359–1364
Pan F X, Lu J W, Liu W, Geng M J, Li X K, Cao W D. Effect of different green manure application on soil fertility. Plant Nutr Fert Sci, 2011, 17: 1359–1364 (in Chinese with English abstract)
[5]Alijani K, Bahrani M J, Kazemeini S A. Short-term responses of soil and wheat yield to tillage, corn residue management and nitrogen fertilization. Soil Tillage Res, 2012, 124: 78–82
[6]Li C F, Yang J, Zhang C, Zhang Z S, Zheng M, Ahmad S, Cao C G. Effect of short-term tillage and fertilization on grain yields and soil properties of rice production systems in central China. J Food Agric Environ, 2010, 8: 577–584
[7]陈丹梅, 段玉琪, 杨宇虹, 晋艳, 黄建国, 袁玲. 长期施肥对植烟土壤养分及微生物群落结构的影响. 中国农业科学, 2014, 47: 3424–3433
Chen D M, Duan Y Q, Yang Y H, Jin Y, Huang J G, Yuan L. Effect of long-term fertilization on flue-cured tobacco soil nutrients and microorganisms community structure. Sci Agric Sin, 2014, 47: 3424–3433 (in Chinese with English abstract)
[8]于昕阳, 翟丙年, 金忠宇, 李永刚, 王颖, 张昊青, 王朝辉. 有机无机肥配施对旱地冬小麦产量, 水肥利用效率及土壤肥力的影响. 水土保持学报, 2015, 29: 320–324
Yu X Y, Zhai B N, Jin Z Y, Li Y G, Wang Y, Zhang H Q, Wang Z H. Effect of combined application of organic and inorganic fertilizers on winter wheat yield, water and fertilizer use efficiency and soil fertility in dryland. J Soil Water Conserv, 2015, 29: 320–324 (in Chinese with English abstract)
[9]张伟, 许俊杰, 张天宇. 土壤真菌研究进展. 菌物研究, 2005, 3: 52–58
Zhang W, Xu J J, Zhang T Y. Advancement on soil fungal research. J Fungal Res, 2005, 3: 52–58 (in Chinese with English abstract)
[10]康振生. 我国植物真菌病害的研究现状及发展策略. 植物保护, 2010, 36: 9–12
Kang Z S. Current status and development strategy for research on plant fungal diseases in China. Plant Prot, 2010, 36: 9–12 (in Chinese with English abstract)
[11]Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil, 1995, 170: 75–86
[12]Alguacil M M, Torrecillas E, Caravaca F, Fernández D A, Azcón R, Roldán A. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biol Biochem, 2011, 43: 1498–1508
[13]张焕军, 郁红艳, 丁维新. 长期施用有机无机肥对潮土微生物群落的影响. 生态学报, 2011, 31: 3308–3314
Zhang H J, Yu H Y, Ding W X. The influence of the long-term application of organic manure and mineral fertilizer on microbial community in calcareous fluvo-aquic soil. Acta Ecol Sin, 2011, 31: 3308–3314 (in Chinese with English abstract)
[14]王轶, 李季, 曹志平, 杨合法. 长期施肥对农田土壤真菌的影响. 中国生态农业学报, 2014, 22: 1267–1273
Wang Y, Li J, Cao Z P, Yang H F. Effects of long-term fertilization on soil fungi. Chin J Eco-Agric, 2014, 22: 1267–1273 (in Chinese with English abstract)
[15]Hawksworth D L. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res, 1991, 95: 641–655
[16]张秋芳, 刘波, 林营志, 史怀, 杨述省, 周先冶. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性. 生态学报, 2009, 29: 4127–4137
Zhang Q F, Liu B, Lin Y Z, Shi H, Yang S S, Zhou X Y. The diversity of phospholipid fatty acid (PLFA) biomarker for the microbial community in soil. Acta Ecol Sin, 2009, 29: 4127–4137 (in Chinese with English abstract)
[17]吴敏娜, 张惠文, 李新宇, 苏振成, 张成刚. 提取北方土壤真菌DNA的一种方法. 生态学杂志, 2007, 26: 611–616
Wu M N, Zhang H W, Li X Y, Su Z C, Zhang C G. An extraction method of fungal DNA from soils in North China. Chin J Ecol, 2007, 26: 611–616 (in Chinese with English abstract)
[18]O’Brien B L, Parrent J L, Jackson J A, Moncalvo J M, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl Env Microbial, 2005, 71: 5544–5550
[19]Hawksworth D L. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv, 2012, 21: 2425–2433
[20]Hawksworth D L, Rossman A Y. Where are all the undescribed fungi. Phytopathology, 1997, 87: 888–891
[21]段曌, 肖炜, 王永霞, 赖泳红, 崔晓龙. 454测序技术在微生物生态学研究中的应用. 微生物学杂志, 2011, 31: 76–81
Duan Z, Xiao W, Wang Y X, Lai Y H, Cui X L. Application of 454 sequencing technique in microbial ecology. J Microbiol, 2011, 31: 76–81 (in Chinese with English abstract)
[22]陈哲, 袁红朝, 吴金水, 魏文学. 长期施肥制度对稻田土壤反硝化细菌群落活性和结构的影响. 生态学报, 2009, 29: 5923–5929
Chen Z, Yuan H Z, Wu J S, Wei W X. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Acta Ecol Sin, 2009, 29: 5923–5929 (in Chinese with English abstract)
[23]袁红朝, 秦红灵, 刘守龙, 童成立, 魏文学, 吴金水. 长期施肥对红壤性水稻土细菌群落结构和数量的影响. 中国农业科学, 2011, 44: 4610–4617
Yuan H Z, Qin H L, Liu S L, Tong C L, Wei W X, Wu J S. Response of abundance and composition of the bacterial community to long-term fertilization in paddy soils. Sci Agric Sin, 2011, 44: 4610–4617 (in Chinese with English abstract)
[24]何振立. 土壤微生物量的测定方法: 现状和展望. 土壤学进展, 1994, 22(4): 36–44
He Z L. Method for determination of soil microbial biomass: present and future. Prog Soil Sci, 1994, 22(4): 36–44 (in Chinese with English abstract)
[25]许冠东. Genome Sequencer FLX引领快速基因组测序时代的到来. 微生物学通报, 2008, 35: 149–151
Xu G D. Genome Sequencer FLX lead the arrival of the era of rapid genome sequencing. Microbiology, 2008, 35: 149–151 (in Chinese with English abstract)
[26]杨剑虹. 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008. pp 26–75
Yang J H. Soil Chemical Analysis and Environmental Monitoring. Beijing: China Publishing House, 2008. pp 26–75 (in Chinese)
[27]Amato K R, Yeoman C J, Kent A, Righini N, Carbonero F, Eatrada A, Gaskins H R, Stumpf R M, Yildirim S, Torralba M, Gillis M, Wilson B A, Nelson K E, White B A, Leigh S R. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J, 2013, 7: 1344–1353
[28]张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响. 中国农学通报, 2010, 26: 182–187
Zhang B Y, Chen T L, Wang B. The influence of long-term application of chemical fertilizer on soil quality. Chin Agric Sci Bull, 2010, 26: 182–187 (in Chinese with English abstract)
[29]林治安, 赵秉强, 袁亮, Hwat B S. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42: 2809–2819
Lin Z A, Zhao B Q, Yuan L, Hwat B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Sci Agric Sin, 2009, 42: 2809–2819 (in Chinese with English abstract)
[30]张国荣, 李菊梅, 徐明岗, 高菊生, 谷思玉. 长期不同施肥对水稻产量及土壤肥力的影响. 中国农业科学, 2009, 42: 543–551
Zhang G R, Li J M, Xu M G, Gao J S, Gu S Y. Effect of chemical fertilizer and organic manure on rice yield and soil fertility. Sci Agric Sin, 2009, 42: 543–551 (in Chinese with English abstract)
[31]徐祖祥. 西湖平原区连续13年定位施肥对麦, 稻产量及土壤肥力的影响. 植物营养与肥料学报, 2011, 17: 16–21
Xu Z X. Influences of consecutive 13 years long-term fertilization on yield of rice and wheat and soil fertility in Xihu plain. Plant Nutr Fert Sci, 2011, 17: 16–21 (in Chinese with English abstract)
[32]李新爱, 童成立, 蒋平, 吴金水, 汪立刚. 长期不同施肥对稻田土壤有机质和全氮的影响. 土壤, 2006, 38: 298–303
Li X A, Tong C L, Jiang P, Wu J S, Wang L G. Effect of long-term fertilization on soil organic matter and total nitrogen in paddy soil. Soils, 2006, 38: 298–303 (in Chinese with English abstract)
[33]Mitchell C C, Weaterman R L, Brown J R, Peck T R. Overview of long-term agronomic research. Agron J, 1991, 83: 24–29
[34]侯红乾, 刘秀梅, 刘光荣, 李祖章, 刘益仁, 黄永兰, 冀建华, 邵彩虹, 王福全. 有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响. 中国农业科学, 2011, 44: 516–523
Hou H Q, Liu X M, Liu G R, Li Z Z, Liu Y R, Huang Y L, Ji J H, Shao C H, Wang F Q. Effect of long-term located organic-inorganic fertilizer application on rice yield and soil fertility in red soil area of China. Sci Agric Sin, 2011, 44: 516–523 (in Chinese with English abstract)
[35]董春华, 高菊生, 曾希柏, 刘强, 徐明岗, 文石林. 长期有机无机肥配施下红壤性稻田水稻产量及土壤有机碳变化特征. 植物营养与肥料学报, 2014, 20: 336–345
Dong C H, Gao J S, Zeng X B, Liu Q, Xu M G, Wen S L. Effect of long-term organic manure and inorganic fertilizer combined application on rice yield and soil organic carbon content in reddish paddy fields. Plant Nutr Fert Sci, 2014, 20: 336–345 (in Chinese with English abstract)
[36]Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem, 2002, 34: 1299–1307
[37]李娟, 赵秉强, 李秀英, Hwat B S. 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响. 中国农业科学, 2008, 41: 144–152
Li J, Zhao B Q, Li X Y, Hwat B S. Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility. Sci Agric Sin, 2008, 41: 144–152 (in Chinese with English abstract)
[38]丁伟, 叶江平, 蒋卫, 霍沁建, 陈晓明, 梁永江, 张长华, 袁玲. 长期施肥对植烟土壤微生物的影响. 植物营养与肥料学报, 2012, 18: 1168–1176
Ding W, Ye J P, Jiang W, Huo Q J, Chen X M, Liang Y J, Zhang C H, Yuan L. Effects of long-term fertilization on microorganisms in flue-cured tobacco grown soil. Plant Nutr Fert Sci, 2012, 18: 1168–1176 (in Chinese with English abstract)
[39]臧逸飞, 郝明德, 张丽琼, 张昊青. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35: 1445–1451
Zang Y F, Hao M D, Zhang L Q, Zhang H Q. Effect of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecol Sin, 2015, 35: 1445–1451 (in Chinese with English abstract)
[40]游春平, 傅莹, 韩静君, 刘开启, 郑奕雄. 我国花生病害的种类及其防治措施. 江西农业学报, 2010, 22: 97–101
You C P, Fu Y, Han J J, Liu K Q, Zheng Y X. Occurrence and management of main peanut diseases in China. Acta Agric Jiangxi, 2010, 22: 97–101 (in Chinese with English abstract)
[41]Kamaa M, Mburu H, Blanchart E, Chibole L, Chotte J L, Kibunja C, Lesueur D. Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya. Biol Fert Soils, 2011, 47: 315–321
[42]陈丹梅, 陈晓明, 梁永江, 霍新建, 张长华, 段玉琪, 杨宇虹, 袁玲. 轮作对土壤养分、微生物活性及细菌群落结构的影响. 草业学报, 2015, 24: 56–65
Chen D M, Chen X M, Liang Y J, Huo X J, Zhang C H, Duan Y Q, Yang Y H, Yuan L. Influence of crop rotation on soil nutrients, microbial activities and bacterial community structure. Acta Pratacult Sin, 2015, 24: 56–65 (in Chinese with English abstract)
[43]常越亚, 胡雪峰, 穆贞, 杨敏勇, 王坚. 施肥方式对水稻抗病虫害能力的影响. 土壤通报, 2015, 46: 446–452
Chang Y Y, Hu X F, Mu Z, Yang M Y, Wang J. Effect of different fertilization on the capabilities of rice’s resistance to pests and diseases. Chin J Soil Sci, 2015, 46: 446–452 (in Chinese with English abstract)
[44]王海英, 郭守玉, 黄满荣, Lumbsch H T, 魏春江. 子囊菌较担子菌具有更快的进化速率和更高的物种多样性. 中国科学: 生命科学, 2010, 40: 731–737
Wang H Y, Guo S Y, Huang M R, Lumbsch H T, Wei C J. Ascomycota has faster evolutionary rate and higher species diversity than Basidiomycota (Fungi). Sci China Life Sci, 2010, 40: 731–737 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!