欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (04): 522-529.doi: 10.3724/SP.J.1006.2017.00522

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻淡黄叶矮化突变体yld的遗传分析及基因定位

李自壮1,2,**,徐乾坤2,**,余海平2,周亭亭2,薛大伟1,曾大力2,郭龙彪2,钱前2,*,任德勇2,*   

  1. 1 杭州师范大学生命与环境学院, 浙江杭州 310006;2 中国水稻研究所水稻生物学国家重点实验室,浙江杭州 310006
  • 收稿日期:2016-07-19 修回日期:2016-11-02 出版日期:2017-04-12 网络出版日期:2016-11-11
  • 通讯作者: 任德勇, E-mail: rendeyong616@163.com; 钱前, E-mail: qianqian188@hotmail.com
  • 基金资助:

    本研究由国家自然科学基金项目(31401464)资助。

Genetic Analysis and Gene Mapping of Yellow leaf and dwarf (yld) mutant in Rice

LI Zi-Zhuang1,2,**,XU Qian-Kun2,**,YU Hai-Ping2,ZHOU Ting-Ting2,XUE Da-Wei1,ZENG Da-Li2,GUO Long-Biao2,QIAN Qian2,*,REN De-Yong2,*   

  1. 1 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310006, China; 2 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
  • Received:2016-07-19 Revised:2016-11-02 Published:2017-04-12 Published online:2016-11-11
  • Contact: 任德勇, E-mail: rendeyong616@163.com; 钱前, E-mail: qianqian188@hotmail.com
  • Supported by:

    The study was supported by the National Natural Science Foundation of China (31401464).

摘要:

水稻叶色突变体是研究植物光合作用、叶绿素代谢和叶绿体发育的重要材料。本研究从籼稻品种蜀恢527 EMS (甲基磺酸乙酯)诱变处理后代中筛选出一个淡黄叶矮化突变体Yellow leaf and dwarf (yld)。与野生型蜀恢527相比,该突变体全生育期都表现出淡黄叶矮化性状,其剑叶的淡黄色表型最为明显,倒二叶次之,倒三叶最弱,其中剑叶的叶绿素及类胡萝卜素含量降低最为明显;并且伴随着穗粒数、千粒重、结实率、株高等主要农艺性状的显著降低,但有效穗显著增多。透射电镜观察结果显示,与野生型相比,该突变体多数叶绿体结构基本完整,但基粒模糊,基质片层大量减少且排列疏松。遗传分析表明,该突变性状受一对隐性核基因控制。在yld突变体与粳稻武运粳7杂交的F2群体中分离出323个突变单株,最终将YLD基因定位在第11染色体的L5L7两标记之间,物理距离为115.7 kb。本研究为YLD基因的克隆和功能分析奠定了基础。

关键词: 水稻, 淡黄叶矮化突变体, 遗传分析, 基因定位

Abstract:

Leaf color mutants of rice are ideal materials in studies on photosynthesis, chlorophyll metabolism and chloroplast development in plants. A yellow leaf and dwarf mutant yldwas obtained from ethyl methane sulfonate (EMS)-treated Shuhui 527 (Oryza sativa L.). Compared with the wild type, the yld mutant showed yellow leaf and dwarfism, and the contents of chlorophyll and carotenoid were obviously decreased. Transmission electron microscope observation revealed that the structure of most chloroplasts seemed to be normal, however, with the fuzzy grana, and fewer and looser stroma lamella in the yld mutant. Meantime, plant height, branch number, grain number per panicle, 1000-grain weight and seed-setting rate were significantly decreased, while the number of effective panicle was obviously increased in the ylda single recessive gene. The 323 mutational individuals from the F2 generation of the cross of Wuyunjing 7 and yld mutant were used for gene mapping. Finally, the YLD locus was mapped on chromosome 11 between two Indel markers L5 and L7, with an approximate 115 kb physical region. This result would facilitate cloning and functional analysis for the YLD gene. mutant compared with those in the wild type. Genetic analysis showed that the yld mutant traits were controlled by

Key words: Rice, Yellow leaf and dwarf mutant, Genetic analysis, Gene mapping

[1] Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect innon-yellow coloring 3, an a/b hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940–952
[2] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[3] Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906
[4] Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2mutation inhibits translation of plastid transcripts for the plastidgenetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985–996
[5] Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68: 1039–1050
[6] Goh C H, Satoh K, Kikuchi S, Kim S C, Ko S M, Kang H G, Jeon J S, Kim C S, Park Y I. Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings. Plant Biotechnol Rep, 2010, 4: 281–291
[7] Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic effects of sodium azide in rice. Crop Sci, 1979, 20: 663–668
[8] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818
[9] 刘文真. 三个水稻叶色突变体的鉴定与基因克隆. 浙江大学博士学位论文, 浙江杭州, 2006
   Liu W Z. Characterization of Three Chlorophyll Deficient Mutants in Rice. PhD Dissertation of Zhejiang University, Hangzhou, China, 2006 (in Chinese with English abstract)
[10] Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[11] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472
[12] Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode Chl D and Chl I subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337
[13] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice Non-yellow Coloring 1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375
[14] Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, Non-yellow Coloring 1 and Nyc1-like, are required for chlorophyll b and light-harvesting complex Ⅱ degradation during senescence in rice. Plant J, 2009, 57: 120–131
[15] Zhang Z M, Tan J J, Shi Z Y, Xie Q J, Xing Y, Liu C H, Chen Q L, Zhu H T, Wang J, Zhang J L, Zhang G Q. Albino leaf 1 that encodes the sole octotricopeptide repeat protein is responsible for chloroplast development in rice. Plant Physiol, 2016, 171: 1182–1191
[16] Li C M, Hu Y, Huang R, Ma X Z, Wang Y, Liao T T, Zhong P, Xiao F L, Sun C H, Xu Z J, Deng X J, Wang P R. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. Plant Sci, 2015, 238: 127–134
[17] Yang Y L, Xu J, Huang L C, Leng Y J, Dai L P, Rao Y C, Chen L, Wang Y Q, Tu Z J, Hu J, Ren D Y, Zhang G H, Zhu L, Guo L B, Qian Q, Zeng D L. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J Exp Bot, 2015, 67: 1297–1310
[18] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[19] Fang J, Chai C L, Qian Q, Li C L, Tang J Y, Sun L, Huang Z J, Guo X L, Sun C H, Liu M, Zhang Y, Lu Q T, Wang Y Q, Lu C M, Han B, Chen F, Cheng Z K, Chu C C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J, 2008, 54: 177–189
[20] Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomenbranes. Meth Enzymol, 1987, 148: 350–382
[21] 何瑞峰, 丁毅, 余金洪, 祖明生. 水稻温敏叶绿素突变体叶片超微结构的研究. 武汉植物学研究, 2001, 19: 1–5
He R F, Ding Y, Yu J H, Zu M S. Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res, 2001, 19: 1–5 (in Chinese with English abstract)
[22] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[23] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76
[24] Kosambi D D. The estimation of map distances from recombination values. Ann Hum Genet, 1944, 12: 172–175
[25] 王亚琴, 施军琼, 张婷, 李燕, 张天泉, 张小龙, 桑贤春, 凌英华, 何光华. 水稻绿叶突变体ygl13的鉴定及候选基因分析. 中国农业科学, 2015, 48: 4197–4208
Wang Y Q, Shi J Q, Zhang T, Li Y, Zhang T Q, Zhang X L, Sang X C, Ling Y H, He G H. Characterization and candidate gene analysis of yellow-green leaf mutant ygl13 in rice. Sci Agric Sin, 2015, 48: 4197–4208 (in Chinese with English abstract)
[26] Zhang F T, Luo X D, Hu B L, Wan Y, Xie J K. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Rice, 2013, 6: 7
[27] Mao D H, Yu H H, Liu T M, Yang G Y, Xing Y Z. Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet, 2011, 122: 373–383
[28] Han S H, Sakuraba Y, Koh H J, Paek N C. Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-cis-lycopene and singlet oxygen. Mol Cells, 2012, 33: 87–97
[29] Xing C, Wang G X, Huang J L, Wu J Z. Research on chlorophyll mutation of plants and molecular mechanism. Biotechnol Bull, 2008, 5: 10–12

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!